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Abstract

The use of networks allows the representation of a variety of im-
portant engineering problems. The treatment of a particular class
of network applications, the process synthesis problem, is exposed in
this paper. Process Synthesis seeks to develop systematically process
flowsheets that convert raw materials into desired products. In re-
cent years, the optimization approach to process synthesis has shown
promise in tackling this challenge. It requires the development of a
network of interconnected units, the process superstructure, that rep-
resents the alternative process flowsheets. The mathematical modeling
of the superstructure has a mixed set of binary and continuous vari-
ables and results in a mixed-integer optimization model. Due to the
nonlinearity of chemical models, these problems are generally classified
as Mixed-Integer Nonlinear Programming (MINLP) problems.

A number of local optimization algorithms, developed for the solu-
tion of this class of problems, are presented in this paper: Generalized
Benders Decomposition (GBD), Outer Approximation (OA), General-
ized Cross Decomposition (GCD), Branch and Bound (BB), Extended
Cutting Plane (ECP), and Feasibility Approach (FA). Some recent de-
velopments for the global optimization of nonconvex MINLPs are then
introduced. In particular, two branch-and-bound approaches are dis-
cussed: the Special structure Mixed Integer Nonlinear aBB (SMIN-
aBB), where the binary variables should participate linearly or in
mixed-bilinear terms, and the General structure Mixed Integer Nonlin-
ear BB (GMIN-aBB), where the continuous relaxation of the binary
variables must lead to a twice-differentiable problem. Both algorithms
are based on the aBB global optimization algorithm for nonconvex
continuous problems.

Once the theoretical issues behind local and global optimization
algorithms for MINLPs have been exposed, attention is directed to
their algorithmic development and implementation. The framework
MINOPT is discussed as a computational tool for the solution of
process synthesis problems. It is an implementation of a number of
local optimization algorithms for the solution of MINLPs. The use of
MINOPT is illustrated through the solution of a variety of process
network problems. The synthesis problem for a heat exchanger network
is then presented to demonstrate the global optimization SMIN-aBB
algorithm.

1 Introduction

Network applications exist in many fields including engineering, applied
mathematics, and operations research. These applications include problems



such as facility location and allocation problems, design and scheduling of
batch processes, facility planning and scheduling, topology of transporta-
tion networks, and process synthesis problems. These types of problems are
typically characterized by both discrete and continuous decisions. Thus, the
modeling aspects of these applications often lead to models involving both
integer and continuous variables as well as nonlinear functions. This gives
rise to problems classified as mixed-integer nonlinear optimization problems.

Major advances have been made in the development of mathematical
programming approaches which address mixed-integer nonlinear optimiza-
tion problems. The recent theoretical and algorithmic advances in mixed-
integer nonlinear optimization have made the use of these techniques both
feasible and practical. Because of this, optimization has become a standard
computational approach for the solution of these networking problems.

Some of the major contributions to the development of mixed-integer
nonlinear optimization techniques have come from the field of process syn-
thesis. This is due to the natural formulation of the process synthesis prob-
lem as a mixed-integer nonlinear optimization problem. This has led to
significant algorithmic developments and extensive computational experi-
ence in process synthesis applications. The research in this area has focused
on the overall process synthesis problem as well as subsystem synthesis prob-
lems including heat exchanger network synthesis (HENS), reactor network
synthesis, distillation sequencing, and mass exchange network synthesis, as
well as total process flowsheets.

The process synthesis problem is stated as follows: given the specifi-
cations of the inputs (feed streams) and the specifications of the outputs,
develop a process flowsheet which transforms the given inputs to the desired
products while addressing the performance criteria of capital and operating
costs, product quality, environmental issues, safety, and operability. Three
key issues must be addressed in order to determine the process flowsheet:
which process units should be in the flowsheet, how the process units should
be interconnected, and what the operating conditions and sizes of the pro-
cess units should be. The optimization approach to process synthesis has
been developed to address these issues and has led to some of the major the-
oretical and algorithmic advances in mixed-integer nonlinear optimization.

The next section describes the optimization approach to process synthe-
sis which leads to the formulation of a Mixed-Integer Nonlinear Program.
In Section 3, the optimization algorithms developed for the solution of the
posed optimization problem are presented. Although these methods have
been developed for process synthesis, they are applicable to models that



result in other network applications. Section 4 reports some recent develop-
ments for the global optimization of nonconvex MINLPs. Section 5 describes
the algorithmic framework, MINOPT, which implements a number of the
described algorithms. The final part of the paper describes the application
of both global and local methods to a heat exchanger network synthesis
problem.

2 Optimization Approach in Process Synthesis

A major advance in process synthesis has been the development of the op-
timization approach to the process synthesis problem. This approach leads
to a mathematical programming problem classified as a Mixed Integer Non-
linear Program. Significant progress has been made in the development of
algorithms capable of addressing this class of problems.

The optimization approach to process synthesis involves three steps: the
representation of alternatives through a process superstructure, the mathe-
matical modeling of the superstructure, and the development of an algorithm
for the solution of the mathematical model. Each of these steps is crucial
to the determination of the optimal process flowsheet.

The superstructure is a superset of all process design alternatives of in-
terest. The representation of process alternatives is conceptually based on
elementary graph theory ideas. Nodes are used to represent the inputs, out-
puts, and each unit in the superstructure. One-way arcs represent connec-
tions from inputs to process units, two-way arcs represent interconnections
between process units, and one-way arcs represent connections to the out-
puts. The result is a bi-partite planar graph which represents the network of
process units in the superstructure. This network represents all the options
of the superstructure and includes cases where nodes in the graph may or
may not be present. The idea of the process superstructure can be illus-
trated by a process which has one input, two outputs, and potentially three
process units. The network representation of this is shown in Figure 1.

Since all the possible candidates for the optimal process flowsheet are
embedded within this superstructure, the optimal process flowsheet that
can be determined is only be as good as the postulated representation of
alternatives. This superstructure must be rich enough to allow for a com-
plete set of alternatives, but it must also be concise enough to eliminate
undesirable structures.

Another example of a superstructure is illustrated by the two compo-



Figure 1: Network representation of superstructure

nent distillation scheme presented by [KG89]. This process consists of two
feed streams of known composition and flowrate and two products streams
with specified purities. The superstructure consists of a flash unit and a
distillation unit and is shown in Figure 2.

Through the process synthesis, the structure flowsheet and the optimal
values of the operating parameters are determined. The existence of process
units leads to discrete decisions while the determination of operating pa-
rameters leads to continuous decisions. Thus, the process synthesis problem
is mathematically classified as mixed discrete-continuous optimization.

The next step involves the mathematical modeling of the superstruc-
ture. Binary variables are used to indicate the existence of nodes within the
network and continuous variables represent the levels of values along the
arcs. The resulting formulation is a Mixed Integer Nonlinear Programming
Problem (MINLP):

min f(z,y)
s.t. h(z,y)
g(x,y) (1)

< 8

where
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Figure 2: A Two-Column Distillation Sequence Superstructure

x is a vector of n continuous variables representing flow rates, compo-
sitions, temperatures, and pressures of process streams and sizing of
process units.

y is a vector of integer variables representing process alternatives.

f(x,y) is the single objective function representing the performance
criterion.

h(z,y) = 0 are the m equality constraints that represent the mass
and energy balances, and equilibrium expressions.

g(xz,y) < 0 are the p inequality constraints that represent design
specifications, restrictions, and logical constraints.

This formulation is completely general and includes cases where nonlineari-
ties occur in the x space, y space, and joint & — y space.

The integer variables can be expressed as binary variables without loss of
generality. Through an appropriate transformation, the general formulation



can be written as

min f(x,y)
z,y
st. h(z,y) = 0
g(z,y) < 0 (2)
e XCR
S

{0, 1}

where the y are the ¢ binary variables which represent the existence of
process units.

The final step of the optimization approach is the development and ap-
plication of algorithms for the solution of the mathematical model. This
step is highly dependent on the properties of the mathematical model and
makes use of the structure of the formulation. This step focuses on the
development of algorithms capable of addressing the MINLPs.

The solution of MINLPs is particularly challenging due to the combina-
torial nature of the problem (y domain) combined with the nonlinearities
in the continuous domain (x domain). The combinatorial nature of the
problem becomes an issue as the number of y variables increases creating a
large number of possible process structures. In the continuous domain, the
models of chemical processes are generally nonlinear. The nonlinearities in
the problem imply the possible existence of multiple solutions and lead to
challenges in finding the global solution.

Despite the challenges involved in the solution of the MINLPs, there
have been significant advances in the area of MINLPs on the theoretical, al-
gorithmic and computational fronts. Many algorithms have been developed
to address problems with the above form and a review of these developments
is presented in the next section.

3 Algorithms for Convex MINLPs

A number of algorithms have been developed to address problems with the
above form 2. Some deal with the formulation as stated, while others deal
with a restricted class of the problem. The following is a chronological listing
of these algorithms.

1. Generalized Benders Decomposition, GBD [Geo72, PF89, FAC89]

2. Branch and Bound, BB [Bea77, Gup80, OOM90, BM91]



3. Outer Approximation, OA [DG86]
4. Feasibility Approach, FA [MMS86]
5. Outer Approximation with Equality Relaxation, OA /ER [KG8T7]

6. Outer Approximation with Equality Relaxation and Augmented Pen-
alty, OA/ER/AP [VG90]

7. Generalized Outer Approximation, GOA [FL94]
8. Generalized Cross Decomposition, GCD [Hol90];

An overview of these MINLP algorithms and extensive theoretical, algo-
rithmic, and applications-oriented descriptions of GBD, OA, OA/ER,
OA/ER/AP, GOA, and GCD algorithms is found in [F1o95].

Some of these algorithms are applicable only to restricted classes of the
general problem formulation. The general strategy of algorithms used to
solve MINLPs is to formulate subproblems such that the subproblems are
easier to solve than the original problem. This may involve fixing certain
variable types, relaxing certain constraints, using duality, or using lineariza-
tion. The algorithms iterate through solutions of the subproblems which
provide upper and lower bounds on the optimal solution of the original prob-
lem. The nature of the subproblems and the quality of bounds provided by
the subproblems are different for the various algorithms.

3.1 Generalized Benders Decomposition

The work of [Geo72] generalized the work of [Ben62] which exploits the
structure of mathematical programming problems. The algorithm addresses
problems with the form of problem 2. In fact, the algorithm is applicable
to a broader class of problems for which the y variables may be continuous.
The focus here is on MINLP models and thus the y variables will be treated
as binary.

The basic idea behind GBD is the generation of upper and lower bounds
on the solution of the MINLP model through the iterative solution subprob-
lems formulated from the original problem. The upper bound is the result
of the solution of the primal problem while the lower bound is the result
of the solution of the master problem. The primal problem corresponds to
the solution of the original problem 2 with the values of the y variables
fixed. This problem is solved in the & space only and its solution provides



information about the Lagrange multipliers for the constraints. The master
problem is formulated by making use of the Lagrange multipliers and non-
linear duality theory. Its solution provides a lower bound as well as a new
set of y variables. The algorithm iterates between the primal and master
problems generating a sequence of upper and lower bounds which converge
in a finite number of iterations.

3.1.1 Primal Problem

The primal problem results from fixing the values of the y variables. For
values of y fixed to y* where k is an iteration counter, the primal problem
has the following formulation:

min  f(z,y")
s.t. h(z,y*) = 0 (3)
g(z,y*) < 0
r € XCR

The primal formulation is an NLP which can be solved by using existing
algorithms. If the primal problem is feasible, then the optimal solution
provides values for ¥, f(x*, y*), and the Lagrange multipliers \* and p*
for the equality and inequality constraints.

If the primal problem is found to be infeasible when applying a solution
algorithm, a feasibility problem is formulated. This problem can be formu-
lated by minimizing the ¢; or £, sum of constraint violations. One possible
formulation of the feasibility problem is the following:

min a;i +af + a7
®,
s.t. g(z,y*) —a; < 0
h(z,y*)+af —a; = 0 (4)
r € XCR?
a,af,a; > 0

Another possible form for the infeasible primal problem is the following

10



where the equality constraints are not relaxed:

min «

x,a

st gz, y*) <o
h(z,y*) =0
rze X CR"
a>0

(5)

The solution of the feasibility problem provides values for ¥ and the
Lagrange multipliers \¥ and p* for the equality and inequality constraints.

3.1.2 Master Problem

The formulation of the master problem for GBD makes use of nonlinear
duality theory. The key aspects of the master problem formulation are the

projection of the problem onto the y space and the dual representation.

For the projection of the problem onto the y space, problem 2 can be

written as

min inf f(z,y)
y T
st. h(z,y) = 0
g(@y) < 0
r € XCR"
y € Ye{0,1}¢
Let v(y) and V be defined as follows:
v(y) = inf f(zy)
st. h(z,y) = 0
g(z,y) < 0
r € XCR

V ={y:h(z,y) =0,9(x,y) <0 forsome ze€ X CR'}
The projected problem can now be written as:

min v(y)
Y

st. yeY NV

11



The difficulty in solving this problem is that V and v(y) are known only
implicitly. In order to overcome this, dual representations of V' and v(y)
are used.

The dual representation of V' is described in terms of a collection of
regions that contain it. An element of Y also belongs to the set V' if and
only if it satisfies the system:

0 > infL(x,y,\f), Y\NEEA

_ - - P (10)
where A = {AelRim,ue]Rp ZHZO,ZHz‘Zl}
i=1
This system corresponds to the set of constraints that have to be incorpo-
rated for the case of infeasible primal problems.
The dual representation of v(y) is the pointwise infimum of a collection
of functions that support it.

min  f(z,y)
U(y) = St h(may) = 0
r € XCR?
_ | su min L(z,y, A,
_[A,ugo zeX (@:y “)] VyeYnv

where L(z,y,\u) = f(z,y) + X h(z,y) + 17 g(z, y).

Now, the representation for V' (10) and the representation for v(y) (11
are substituted into problem 9 and the scalar p; is introduced to obtain the
following master problem:

min  upg
er}IJ‘B
st. wp > minL(z,y,\,u) VYA\,Vu >0 (12)
zeX _
0o > mlnL(a: y. i) V(A p)eA
zeX

where  L(x,y,),p) = f(x,y) + + A h(z,y) +u"g(z,y) (13)
L(z,y,\ i) = A" h(w y) + " g(z,y)

The key issue in the development of an algorithmic implementation of
GBD is the solution of the master problem. The master problem consists

12



of an outer optimization with respect to y whose constraints are two op-
timization problems with respect to @ corresponding to the feasible and
infeasible primal problems. These inner optimization problems need to be
considered for all possible values of the Lagrange multipliers which implies
that an infinite number of constraints need to be considered for the master
problem.

One way to solve the master problem is to use relaxation of the problem
where only a few of the constraints are considered. The inner optimiza-
tion problems are considered only for fixed values of the multipliers which
correspond to the multipliers from the solution of the primal problem. Fur-
thermore, the inner optimization problems can be eliminated by evaluating
the Lagrange function for fixed values of the  variables corresponding to
the solution of the primal problem. This elimination assumes that the La-
grange function evaluated at the solution to the corresponding primal is a
valid underestimator of the inner optimization problem. This is true when
the projected problem v(y) is convex in y.

3.1.3 GBD Algorithm

Step 1
Obtain initial values: y'
Set the counter: k£ =1
Set the lower bound: LBD = —oo
Set the upper bound: UBD = 400
Initialize the feasibility set: F =)
Initialize the infeasibility set: F = ()
Set the convergence tolerance: € > 0
Step 2
Solve the primal problem for the fixed values of y = y*:
min  f(z,y")
s.t. gz, y*) <0
h(z,y*) =0
Obtain the optimal solution, optimal ¥ and optimal Lagrange
multipliers A\¥ and p*
If the primal is feasible
Update the feasibility set: F =F Uk
If the optimal solution of the primal is less than UBD
update the upper bound (UBD)
Else

13



Solve the infeasible primal problem for the fixed values of y = y*:

min a; + af +af
T,0
s.t. glz,y*) —a; < O
hz,y*) +of —a; = 0
a,af,a; > 0

Obtain the optimal Z* and the Lagrange multipliers \¥ and g*
Update the infeasibility set: F = F Uk
Step 3
Solve the relaxed master problem:

min pp
Y,lp

st oy > f(@,y)+ (A)Tg(=hy) + (W) h(z!y) L€F
0 > (\)'g(@y)+ Ly) l€F
Obtain optimal y**1 and p,
Set the lower bound: LBD = g
IfUBD—LBD <e¢
Terminate
Else
Update the counter: k =k + 1

Go to step 2

This algorithm can be applied to general MINLP models, however it is
only guaranteed to converge to the global solution for problems which meet
specific conditions. First X must be a nonempty convex set, the functions
f and g must be convex for each fixed y € Y, and the function h must be
linear in  foreach y € Y.

3.2 Outer Approximation

The basic ideas behind the Outer Approximation methods [DG86] is similar
to those for GBD. At each iteration, upper and lower bounds on the solution
to the MINLP are generated. The upper bound results from the solution of
a primal problem which is formulated identically to the primal problem for
GBD. The lower bound is determined by solving a master problem which
is an outer linearization of the problem around the primal solution.

The outer approximation methods deal with a subclass of MINLP prob-
lems in which the functions f(x,vy), and g(x, y) are linear in the y variables
and separable in  and y. The set of y variables is also strictly binary vari-
ables. The formulation also does not allow for equality constraints. Thus,

14



any equality constraints must be eliminated either algebraically or numer-
ically in order to apply the OA algorithm. This class of MINLPs has the
following formulation:

min f(z)+c’y

@,y

st. gl@)+cly < 0 (14)
z € XCR"
y € {0,1}7

The OA algorithm is similar to the GBD algorithm in that it iterates
between upper and lower bounding primal and master subproblems. The
difference is in the formulation of the master problem. The master problem
for this method is formed by a projection onto the y space and an outer
approximation of the objective function and feasible region.

3.2.1 Owuter Approximation Primal Problem

As in GBD, the primal problem results from fixing the values of the y
variables to y*:

min f(z)+ cTy*
T
st. g(z)+By*® < 0 (15)
r € XCR?
If this problem is feasible, its solution provides an upper bound on the solu-

tion of the MINLP model. If the primal is infeasible, a feasibility problem
similar to those used in GBD is formulated and solved.

3.2.2 Outer Approximation Master Problem

The master problem is formulated by projecting the problem onto the y
space and using an outer approximation of the objective function and feasible
region. The projected problem can be written as

min v(y) (16)
st. yeY NV
where
v(y) =c’y+ inf f(z)
st. g(x)+Bly<o0 (17)

zeXCR?

15



and
V={y:g(x)+ By <0, forsome z € X CR"} (18)

The outer approximation of v(y) is performed by linearizing f(x) and
g(z) around the solution of the primal problem z*. Provided that the func-
tions f(xz) and g(x) are convex, the linearizations represent valid support
functions. Thus, replacing v(y) with its outer approximation and replacing
y € YNV with y € V along with an integer cut constraint, the following
master problem results:

min ¢’y + poa

SAHOA k k k
poa = f(x") +Vpf(z®)(x — ")
st 0 > g(z*)+ Vg(z*)(x — =*) + By ke E
zeXCR (19)
yeY €{0,1}
Syb— ¥ yf < |B¥| -1, keF
icBk ieENBF

where F is the set of all feasible solutions z* to the primal problem.

Since the y variables participate linearly and are binary variables, this
formulation is an MILP which can be solved by standard branch-and-bound
algorithms. This formulation of the master problem requires that all of
the feasible solutions to the primal problem be known which implies an
exhaustive enumeration of the binary variables. In order to accommodate for
this inefficiency, a relaxation is proposed where only linearizations around
the currently known feasible points are included in the master problem.
Additionally, to ensure that integer combinations which produce infeasible
primal problems are also infeasible in the master problem, linearizations
about the solution to the feasibility problem are also included in the master
problem.

3.2.3 OA Algorithm

Step 1
Obtain starting point: y!
Set the counter: £ =1
Set the lower bound: LBD = —oco
Set the upper bound: UBD = 4000
Set the convergence tolerance: € > 0

16



Step 2
Solve the primal problem for the fixed values of y = y*:
mwin f(z) + cT'y*
s.t. g(x) < —By*
Obtain the optimal z*
If the primal is feasible
If the optimal solution of the primal is less than UBD
Update the upper bound (UBD)
Else
Solve the infeasible primal problem for the fixed values of y*:
min «; + o} +a

T,
s.t. glx) —a; < —ByF
a,afa; > 0
Obtain the optimal z*

Step 3
Solve the relaxed master problem:

min ¢’y + poa
TY;LOA

poa > f(@') + Vi f(z!)(z — )

st S g(wl)+w9<wl)<w—wl>+3y}WEF
0 > g(@)+Vg@)(z—z)+By } VIEF
zeEXCR®
yeY e{0,1}
Y- X 4 < [B]-1 VieF
i€B! ieENB?

Obtain the solution and y*+!

If the solution to the master is greater than the current lower bound
Update the lower bound.

IfUBD—-LBD<e
Terminate

Else

Update the counter: k =k +1

Go to step 2

The stated algorithm may be applied to general problems whose formu-
lation is of the form (14). However, it is not guaranteed to converge to the
global solution unless some additional conditions are met. The functions f
and g must be convex in . If this is not the case, the linearizations em-

17



ployed in the master problem may not be valid and may possibly eliminate
part of the feasible region.
3.3 Outer Approximation/Equality Relaxation

The OA/ER algorithm is a generalization of the Outer Approximation
algorithm [KG87] to handle nonlinear equality constraints. The class of
problems this algorithm can address is the following:

min  f(z) + 'y

z,y
st. glz)+By < 0
h(z)+Cy = 0 (20)
r € XCR
y € {0,1}7

The basic idea behind this algorithm is to relax the equality constraints
into inequalities and apply the OA algorithm. A square diagonal matrix T,
whose diagonal elements are minus one, zero and one, is used for relaxing
the equality constraints.

T* (h(z) + Cy) <0

The matrix 7" has the same number of rows as the number of equality
constraints and the values of the diagonal elements depend on the signs of
the corresponding multipliers obtained from the primal problem. The values
of the elements are one for the multipliers which are positive, minus one for
the negative multipliers, and zero for the zero valued multipliers.

T* = diag(t;) ti = sign(pF)

With the equalities now relaxed to inequalities, the principles of the OA
can be applied to the problem.

3.3.1 OA/ER Algorithm

Step 1
Obtain starting point: y!
Set the counter: k£ =1
Set the lower bound: LBD = —occ
Set the upper bound: UBD = 400
Set the convergence tolerance: € > 0

18



Step 2
Solve the primal problem for the fixed values of y = y*:
mwin f(x) +cTy*
s.t. g(x) < —By*
h(x) = —Cy*
Obtain the optimal £* and the Lagrange multipliers ;%
If the primal is feasible
If the optimal solution of the primal is less than UBD
Update the upper bound (UBD)

Else
Solve the infeasible primal problem for the fixed values of y = y*:
min a; +aof +a,
T,
s.t. gx) —ao; < —Byt
h(z)+aof —a = —Cy*
Qq, a:a Q. > 0
Obtain the optimal Z* and Lagrange multipliers ji*
Step 3

Determine the matrix T
T* = diag(t;;) where t;; = sign(uF)
Solve the relaxed master problem:

min 1+ c'y
po> fla)+%f(@) (e -2
st. 0 > g(z')+Vg(z!)(z —2') + By VIEF
0 > T'(h(z")+ Vh(z))(z — ') + Cy)
0 > g(a') + Vig(a@')(z — 2') + By -
0 > T{h(z')+ Vih(z')(z —2') + Cy) } <
ze X CR"?
yeY €{0,1}¢
Y yi— X y<|B|-1 VIEF
i€B! ieNt

Obtain the solution and y*+!

If the solution to the master is greater than the current lower bound
Update the lower bound.

IfUBD —-LBD<e¢
Terminate

Else

Update the counter: k =k + 1

Go to step 2
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This algorithm is not guaranteed to determine the global solution unless
certain convexity conditions are met.

3.4 Outer Approximation/Equality Relaxation/Augmented
Penalty

The OA/ER/AP algorithm [VG90] is a modification of the OA/ER al-
gorithm. The objective of this algorithm is to avoid convexity assumptions
necessary for finding the global solution using the OA /ER algorithm. This
algorithm addresses the same class of problems as OA /ER:

min f(z)+cly
z,y

st. glz)+By < 0
h(z)+Cy = 0 (21)
r € XCR
y € Ye{0,1}¢

This algorithm uses a relaxation of the linearizations of the master prob-
lem in order to expand the feasible region. Through this expansion of the
feasible region, the probability of cutting part of the feasible region due to
one of the linearizations is reduced. Note that this does not guarantee the
possible elimination of part of the feasible region and thus the determination
of the global solution cannot be guaranteed.

The linearizations in the master problem are relaxed by including slack
variables in the constraints. The violations of the linearizations are penalized
by including weighted sums of the slack variables in the objective function.

The difference between the OA /ER and OA/ER/AP algorithms is in
the master problem formulations. The OA/ER/AP master problem has
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the following formulation:

min = Ty +pu+ Y ws + Y. Y vigpis+ D > Wi gy
T,Y,5,P,9 l [ 7 l 7
f(@h) + Vo f (@) (z — «')

pts 2
s.t. p > g(@')+ Vig(a')(z — o') + By VieF
q > T{h(z")+ Vh(z))(x —z') + Cy)
P > g(@)+Veg(')(z —2') + By Ve F
q > T'(h(@)+ VLh(@)(x-z')+ Cy)
ze XCR"
yeY e{0,1}¢
51,P1,q; 2 0
> yi— L yi<B-1 VIEF
i€eB! 1€EN!
(22)
where s* is a slack scalar for iteration k and p;, and g, are slack vectors at

iteration k for the inequality and relaxed equality constraints respectively.
The weights for the penalty terms, v, v;x, and w; , are determined from
the multipliers of the corresponding constraints from the solution of the
primal problem. The correspondence between the constraints in the primal
problem and the multipliers, u’é, pk, and N is as follows:

min  bTy* + up

g
st.  J@)—pup < 0 <« puk
g(@) -yt < 0 «pF
h(z) —d"y* = 0 « Ak
The weights for the slack variables are assigned as follows ([VG90]):
up = 10008
vig = 1000uF
wi = 1000

3.4.1 OA/ER/AP Algorithm

Step 1
Obtain starting point: y'
Set counter: k =1
Set the lower bound: LBD = —o0
Set the upper bound: UBD = 400
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Set the convergence tolerance: € > 0
Step 2
Solve the primal problem for the fixed values of y*:
min  f(z) + ¢’y*
s.t. glz) < ByF
h(z) = Cy*
Obtain the optimal z* and the Lagrange multipliers p*
If the primal is feasible
If the optimal solution of the primal is less than UBD
Update the upper bound (UBD)

Else
Solve the infeasible primal problem for the fixed values of y*:
min o taof o
T,a
s.t. glx) —a; < cTyk
h(z) + ot —a; = Byt
a,afa; > 0
Obtain the optimal ¥ and Lagrange multipliers *
Step 3

Determine the matrix T as follows:

T* = diag(t;;) where t; = sign(u¥)
Set the values for the penalty parameters, u, v, and w
Solve the relaxed master problem:

min Ty +p+ Y ws + YD vipig+ D0 D wigiy
; ' T

z,Y,5,Pq T
pts > fl@)+Vif(@)(z -z
s.t. p > g(@')+ Vig(z')(z — «') + By Vi eF
q > T'(h(z')+ Vih(z!')(z — ') + Cy)
p > g(&')+ Vig(a')(z - 2') + By VieF
q zfﬂm@0+%h@Mm—mh+Cw}' <
recX CR
yeY e{0,1}¢
s, P, 20
Yyi— Y ui<|B|-1 VI€F
i€B! 1ENL

Obtain optimal y**!

If the solution to the master is greater than the current lower bound
Update the lower bound

IfUBD —-LBD<c¢
Terminate
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Else
Update the counter: k =k + 1
Go to step 2

3.5 Generalized Outer Approximation

The Generalized Outer Approximation, GOA, algorithm [FL94| generalizes
the OA approach to handle the following class of MINLP problems:

min  f(z,y)

T

st. glz,y) < 0
rx € XCR?
y € {0,1}7

The difference between this formulation and that for the OA algorithm is
that there is no restriction on the separability in the & and y variables and
the linearity of the y variables.

The differences between the GOA algorithm and the OA algorithm are
the treatment of infeasibilities, a new master problem formulation, and the
unified treatment of exact penalty functions.

(23)

3.5.1 Primal Problem

The primal problem is formulated in the same manner as in OA. However,
if the primal is infeasible, then the following feasibility problem is solved for

y=y"
min Y wig; (x,y")
T er
s.t. gilz,y*) < 0 iel (24)
€

T XCR"

where I is the set of feasible inequality constraints and I’ is the set of
infeasible inequality constraints. With this formulation of the feasibility
problem, the linearizations of the nonlinear inequality constraints about the
solution of the feasibility problem are violated.

3.5.2 Master Problem

The master problem for GOA is formulated based on the OA ideas of pro-
jection onto the y-space and the outer approximation of the objective func-
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tion and feasible region. The difference in the master problem formulation
is in the utilization of the infeasible primal information.
The projection onto the y-space is the same as for OA:

min v
in - v(y) (25)
st. yeY NV
where
v(y) =cly+ inf f(z)
st. g(xz)+Bly<o (26)
re XCR?
and
V ={y:g(x)+ By <0, forsome z € X} (27)

The formulation of the master problem follows from the outer approx-
imation of the the problem v(y) and a representation of the set V. For
the outer approximation of v(y), the linearizations of the objective function
and constraints are used. The set V' is replaced by linearizations of the con-
straints at y* for which the primal is infeasible, and the feasibility problem
has solution z*. Thus, the master problem has the following formulation:

min ¢’y + pcoa
T, Y,LGOA
s.t.

ok
pcoa > f(xF,y*) + Vf(z*, y*) ( i_ik )

Vk € F
_ ak
0 > glzt,y) + Vg(ah,gb) [ T 77
y—y
z —z* -
029®ﬂyﬂ+vm¢ﬁ¢0(y_yk>Vk€F
zcX CR
yeY e{0,1}7
(28)

where F is the set of all y* such that the primal problem is feasible, and F
is the set of all y* such that the primal problem is infeasible.
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As in OA, relaxation and an iterative procedure are used to solve the
problem since the solution of the complete master problem (28) requires all
feasible and infeasible solutions of the primal problem. For the solution of
the relaxed master problem, the known feasible and infeasible solutions are
used for the outer approximation.

3.5.3 GOA Algorithm

Step 1
Obtain starting point: y'
Set the counter: k =1
Set the lower bound: LBD = —o0
Set the upper bound: UBD = 400
Initialize the feasibility set: F =)
Initialize the infeasibility set: F = ()
Set the convergence tolerance: € > 0
Step 2
Solve the primal problem for the fixed values of y*:
min  f(z,y")
st. glz,y®) < 0
If the primal is feasible
Obtain the optimal x*
Update the feasibility set: F =F Uk
If the optimal solution of the primal is less than UBD
Update the upper bound (UBD)
Else
Solve the infeasible primal problem for the fixed values of y*:
min Y- wig; (2, y")
T ger
s.t. gilz,y¥) < 0 iel

Obtain the optimal z*
Update the feasibility set: F = FUk
Step 3
Solve the relaxed master problem:
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min ¢’y + pcoa
T, Y, LGOA

pcoa > f(zy')+ V(! yh)
s.t.
0 > g(=',y') + Vg(=',y')

T
Yy
_al
0> g(a',y') + Vg(a', ') ( :Z B 5; ) VieF
zeX
yey
Obtain the solution and y
If the solution to the master is greater than the current lower bound
Update the lower bound.
IfUBD —-LBD<¢
Terminate
Else
Update the counter: k =k + 1
Go to step 2

k+1

3.6 Generalized Cross Decomposition

The Generalized Cross Decomposition, GCD, algorithm [Hol90] exploits the
advantages of Dantzig-Wolfe Decomposition and GBD and simultaneously
utilizes primal and dual information. This algorithm can address problems
with the general MINLP formulation (2) where the constraints are parti-
tioned into two sets:

min  f(z,y)
T,y
st gi(zy) < 0
gx(z,y) < 0O
h1(.’B,y) =0 (29)
h2(-’17,y) = O
z € XCR®
y € {0,1}¢

This algorithm consists of two phases and convergence tests. Phase I
involves the solution of the primal and dual subproblems where the primal
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subproblem provides an upper bound on the solution along with Lagrange
multipliers for the dual subproblem. The dual subproblem provides a lower
bound on the solution of the problem and supplies new values of the y vari-
ables for the primal subproblem. Both the primal and dual subproblems
provide cuts for the master problem (Phase II). In Phase II either a primal
master problem or a Lagrange relaxation master problem is solved. The pri-
mal master problem is formulated using the same derivation as for the GBD
master problem while the Lagrange relaxation master problem is formulated
by using Lagrangian duality. The algorithm also uses several convergence
tests to determine whether or not solutions of various subproblems can pro-
vide bound or cut improvement.

The algorithm for GCD is based on the idea that it is desirable to
solve as few master problems as possible since these are generally more
computationally intensive. The algorithm makes extensive use of the primal
and dual subproblems to reduce the number of times the master problem
must be solved to obtain the solution.

3.6.1 GCD Algorithm

Step 1
Obtain starting point: y'
Set the counter: £k =1
Set the lower bound: LBD = —o0
Set the upper bound: UBD = 400
Initialize the feasibility set: F = ()
Initialize the infeasibility set: F = ()
Step 2
Solve the primal problem for the fixed values of y*:

min  f(z,y")

st. g (z.y*) < 0
go(z,y*) < 0
hl(:vayk) = 0
h2($,yk) =0

r € XCR"

Obtain the optimal ¥ and Lagrange multipliers A\¥, A5, ¥, and p%
If the primal is feasible
Update the feasibility set: F =F Uk
If the optimal solution of the primal is less than UBD
update the upper bound (UBD)
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Perform CTD test for \¥ and p¥
Else
Solve the infeasible primal problem for the fixed values of y*:
min o1 + a0 + ajl +a, + 0‘:2 +a,y

T,a
s.t. gl(w,yk) —a;; < 0
go(@,y*) —aie < 0
hi(z,y*) + o —a; = 0
ho(z,y*) +ah—a, = 0
i1, Qg 0y, 0y, a0y > 0

Obtain the optimal ¥ and the Lagrange multipliers A\¥, A5, u% and ik
Update the infeasibility set: F = F U k
Perform CTDU test for A} and p¥
Step 3
If CTD or CTDU test from Step 2 is not passed
Solve Relaxed Lagrange Relaxation Master problem:

max  Up
AL,
st oy < f(@hy) + (M) Thi(a, y') + (u1)Tg: (2l y!) 1€F
0 < \)Thi(e,y") + ()T, (&) lEF
pr = 0
Obtain optimal A\¥ and p¥

Step 4
If K € F or the CTD or CTDU test from Step 2 is not passed
Solve the Dual Subproblem:
min  f(2,y) + O Thi(@,y) + (1) 79 (2, )
s.t. h2

Q

N

8

&

IA
oo

Obtain optimal y¥+1

If the solution is greater than the lower bound
Update the lower bound
Else

Solve the Dual Feasibility Subproblem:
min - (\)Tha(z,y) + (71)79: (2, y)
s.t. ho(z,y)

g>(z,y)

IA
oo

Obtain the optimal y**!

Step 5
Perform the CTP test for y*+t!
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If the CTP test fails
Solve the Relaxed Primal Master Problem:

min

Y,Up

st. e > flahy)+ ()T y) + (1) gzl y) 1€F
0 > (M)Th(@y)+ (i) 9@, y) lEF

Obtain the optimal y*+!

If the solution is greater than the lower bound
Update the lower bound
IfUBD—-LBD <e
Terminate
Else
Update the counter: £k =k + 1
Go to step 2

The convergence tests are defined as follows:

CTP Test At the k' iteration, if the solution from the Dual Subproblem

y*t1 satisfies

UBD > f(a,y*) + (\)Th(z!, y* 1) + (u)Tg(z!, y*1) 1eF
0 > (A)Th(z!,y**) + (5" g (!, y* ) leF

then y**! will provide an upper bound or cut improvement. Other-
wise, the Relaxed Primal Master is solved to obtain a new y*+!.

CTD Test At the k'” iteration, if the feasible solution of the Primal Prob-
lem satisfies:

LBD < f(z',y") + W) h(z',y") + (uf)Tg(z!.y") 1€F

then \¥ and p¥ will provide a lower bound or cut improvement. Oth-
erwise, the Relaxed Lagrange Relaxation Master is solved to obtain
new \¥ and pf.

CTDU Test At the k** iteration, if the Primal Problem is infeasible and
the solution to the Infeasible Primal Problem satisfies

0< (W) h(E! y') + (55)Tg(z',y)) L€F

then /_\’1c and ,E’f will provide cut improvement. Otherwise, the Relaxed
Lagrange Relaxation Master is solved to obtain A} and u%.
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The situations where the GCD algorithm reduces to Dantzig-Wolfe de-
composition and GBD can be observed. First, when the tests CTD and
CTDU are not passed at all iterations and only the relaxed primal master
problem is used, GCD reduces to GBD. On the other hand, if the test
CTP is not used at all iterations and only the relaxed primal Lagrange
problem is used, then GCD reduces to Dantzig-Wolfe decomposition.

The algorithm for GCD is well-illustrated by the use of a flow diagram
such as that in Figure 3.

3.7 Branch-and-Bound Algorithms

A number of branch-and-bound algorithms have been proposed to identify
the global optimum solution of problems which are convex in the a-space and
relaxed y-space. [Bea77, GR85, OOM90, BM91, QG92]. These algorithms
can also be used for nonconvex problems of the form (2) but their conver-
gence to the global optimum solution can only be guaranteed for convex
problems. A basic principle common to all these algorithms is the gener-
ation of valid lower bounds on the original MINLP through its relaxation
to a continuous problem. In most algorithms, the continuous problem is
obtained by letting binary variables take on any value between 0 and 1. In
most algorithms, this relaxation is an NLP problem. The only exception is
the algorithm of [QG92], discussed in Section 3.7.3, in which an LP prob-
lem is obtained. If the NLP relaxation has an integer solution, this solution
provides an upper bound on the global solution. The generation of lower
and upper bounds in this manner is referred to as the bounding step of the
algorithm. At first, all the binary variables are relaxed and the continuous
problem corresponds to the first node of a branch-and-bound tree. At the
second level, two new nodes are created by forcing one of the binary vari-
ables to take on a value of 0 or 1. This is the branching step. Nodes in
the tree are pruned when their lower bound is greater than the best upper
bound on the problem, or when the relaxation is infeasible. The algorithm
terminates when the lowest lower bound is within a pre-specified tolerance
of the best upper bound.

Although the size of the branch-and-bound tree is finite, and convergence
is guaranteed, it is desirable to explore as few nodes of the tree as possible.
The selection of the branching node and variable and the solution of the
relaxed problem all affect the convergence characteristics of the algorithm.
Several strategies have been suggested in the literature.
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Figure 3: Generalized Cross Decomposition Flow Diagram
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3.7.1 Selection of the Branching Node

Since all nodes whose lower bound is less than the best upper bound must be
explored before convergence can be declared, most algorithms use the node
with the lowest lower bound for branching. It is often the strategy which
minimizes computational requirements [LW66].

In some cases, a depth-first approach has been adopted [GR85, QG92].
In this case, the last node created is selected for branching and the branch-
and-bound tree is explored vertically, until an integer solution is obtained
and backtracking can be used to move back towards the root of the tree,
until a node with a child still open for search is identified. This strategy can
lead to the generation of a tighter upper bound as levels in the branch-and-
bound tree where a large fraction of the binary variables are fixed to one of
their bounds are quickly reached. However, it may result in the solution of
an unnecessarily large number of relaxations.

The breadth-first approach can also be followed in exploring the solution
space. In this case, every node on a level is branched on before moving
on to the next level. This approach can be especially useful at the initial
levels of the tree, in order to identify promising branches that should then be
explored through a depth-first approach. Thus, a combination of a depth-
first and breadth-first strategies is likely to result in smaller computational
expense than the adoption of either a single one of these techniques.

Finally, a node can be selected based on the “quality” of the solution of
the relaxation, as measured by the estimation of the node [GR85]. In this
case, nodes for which the values of the integer variables at the solution of
the continuous relaxation lie far away from an integer solution are penalized.
This deviation from integrality is combined with the value of the objective
function for each node, to yield a quantity referred to as estimation. The
node with the lowest estimation is then chosen as the next branching node.

3.7.2 Selection of the Branching Variable

The most commonly used criterion for the selection of a branching variable
y® is the most fractional variable rule [GR85, OOM90]. The variable which
is farthest from its binary bounds at the solution of the node to be explored
is selected for branching.

Other approaches attempt to determine which binary variable has the
greatest effect on the lower bound of the problem. If the user has prior
knowledge of the problem, branching priorities may be set to accelerate the
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increase of the best lower bound [GR85]. The quantitative analysis of the
effect of each binary variable has also been proposed through the use of
pseudo-costs [BGGT71, GR85]. The pseudo-cost of a variable y; is defined
by calculating the relative change in the objective function when y; is fixed
to 0 or 1. Thus, if the solution of the NLP with 0 <y; <1is y; = y; and
f(z,y) = f*, and the optimum objective value with y; = 0 is fo, the lower
pseudo-cost associated with y; is PC]-L = (fo — f*)/y;. Similarly, if f; is
the optimum objective value for y; = 1, the upper pseudo-cost is defined as
PCJU = (fi — f*)/(1 —yj). To avoid excessive computational requirements,
pseudo-costs are only calculated once. At each node, the pseudo-costs of
fractional variables are updated by computing the minimum of PCJ-Ly;-‘ and
PC]U(l —yj), where y7 is the value of y; at the solution of the NLP at the
branching node. The variable with the maximum pseudo-cost is selected
for branching as it is expected to lead to the greatest increase in the lower
bound on the problem.

3.7.3 Generation of a Lower Bound

At each node, a relaxation of the MINLP problem must be solved in order
to generate a lower bound. This procedure can be costly for large problems
and [BM91] advocate the early detection of non-integer solutions in order
to reduce the time spent solving NLPs. If the binary variables appear to
be converging to values away from their bounds, the NLP solver should be
interrupted before full convergence has been achieved and the current node
should be branched on.

[QGY92] suggest further relaxation of the problem to an LP in order to
obtain lower bounds. When the lower bounding LP has an integer solution,
this integer combination is used to formulate an NLP problem which yields
an upper bound on the original problem. The LP problems are generated
by linearizing the nonlinear functions at the solution of each NLP. In or-
der to prevent the LPs from becoming excessively large, a reformulation
which combines all nonlinearities into one inequality constraint is used. The
first linearization is obtained by fixing the binary variables to an arbitrary
combination and solving the resulting NLP.

3.7.4 Algorithmic Procedure

The general algorithmic statement for branch-and-bound approaches is as
follows:
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Step 1
Set absolute tolerance ¢; set LBD* = —oco and UBD* = .
Set node counter k = 0.
Initialize set of nodes to be bounded, J = {0};
Set relaxed y-space, Yo = [0, 1]7.
NN, the list of nodes to be explored, is empty.
Step 2 Bounding
Solve relaxed NLP problem, for j € J :
LBDj = min f(z,y)

st. h(z,y) = 0
glz,y) < 0

r € XCR"
Yy € Yj

If all y variables are integer at the solution:
If LBD; <UBD*, UBD* = LBD,;.
Else, fathom the current node.
If some y variables are fractional:
If LBD; < UBD*, add the current node to N.
Else, fathom the current node.
Step 3
Set LBD* to the lowest lower bound from the list N.
If UBD* — LBD* < ¢, terminate with solution UBD*.
Otherwise, proceed to Step 4.
Step 4 Branching
Select the next node to be explored, N; (i < k), from list N. Its
lower bound is LBD; and the corresponding y-space is Y;.
Select a branching variable y?.
Create two new regions Y, = Y; N {y|y? =0} and
Yie=Y;Nn{yly? =1}.
Set J=k+1,k+2 and k =k + 2. Go back to Step 2.

3.8 Extended Cutting Plane (ECP)

The cutting plane algorithm proposed by [Kel60] for NLP problems has
been extended to MINLPs [WPG94, WP95]. This Extended Cutting Plane
algorithm (ECP) can address problems of the form:
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min clz + cgy
s.t. glz,y) < 0

zr € XCR

y € Yinteger
where ¢; and ¢, are constant vectors.

Problems with a nonlinear objective function, f(z,y), can be reformu-
lated by introducing a new variable z such that f(x,y) — z < 0 and mini-
mizing z.

The ECP algorithm relies on the linearization of one of the nonlinear
constraints at each iteration and the solution of the increasingly tight MILP
made up of these linearizations. The solution of the MILP problem provides
a new point on which to base the choice of the constraint to be linearized
for the next iteration of the algorithm. Unlike the Outer Approximation,
described in Section 3.2, the ECP does not require the solution of any NLP
problems for the generation of an upper bound. As a result, a large number
of linearizations are required for the approximation of highly nonlinear prob-
lems and the algorithm does not perform well in such cases. Due to the use
of linearizations, convergence to the global optimum solution is guaranteed
only for problems involving inequality constraints which are convex in the
x and relaxed y-space.

Given a point (2°,9°) in the feasible set, the function g;(x,y) can be
underestimated by

09; 3gi>
. 0 0 7 0 0 . 31
gi(x”,y°) + (—8m>w0,y0 (@ — z°) + (—8y o (y—vy") (31)

The function gj,(z,y), where j, = argmax; g;(z’,y°), is then used to
construct an underestimating MILP problem

min cgw—l—cfy

s.t. lo(w, )

T

Y
0,0 995 .0 39_;'()) )

where ly(xz,y) = gjo(°,y") + ( s )wO,yO (x—a”) + ( By ) 40 40 (y—9°)-

35



At any iteration k, a single constraint is chosen for linearization and
the corresponding linearization [i(x,y) is added to the MILP. All linear
constraints from the original MINLP problem are, of course, incorporated
into the MILP from the start of the algorithm.

3.8.1 Algorithmic Procedure

The algorithmic procedure is:

Step 1
Set absolute tolerance €; set LBD* = —oc.
Set iteration counter ¥ = 0 and select starting point (z°,y?).
Step 2
Solve kth MILP problem:
LBD* =min clz+ cgy
s.t. li(z,y) <
r € XCR?
Yy €
The optimal solution of the MILP is at (z*, y*).
Find j; = argmax; g;(z*, y*).
Step 3
If gjk(a:k, y*) < ¢, convergence has been reached. Terminate with
solution LBD*.
Otherwise, proceed to Step 4.
Step 4
Construct lx(x,y). Set k = k + 1. Return to Step 2.

3.9 Feasibility Approach

This algorithm was proposed by [MM85] as an extension to MINLP problems
of the MINOS algorithm [MS93] for large-scale nonlinear problems.

The premise of their approach is that the problems to be treated are
sufficiently large that techniques requiring the solution of several NLP re-
laxations, such as the branch-and-bound approach of Section 3.7, have pro-
hibitively large costs. They therefore wish to account for the presence of
the integer variables in the formulation and solve the mixed-integer problem
directly. This is achieved by fixing most of the integer variables to one their
bounds (the nonbasic variables) and allowing the remaining small subset
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(the basic variables) to take discrete values in order to identify feasible solu-
tions. After each iteration, the reduced costs of the variables in the nonbasic
set are computed to measure of their effect on the objective function. If a
change causes the objective function to decrease, the appropriate variables
are removed from the nonbasic set and allowed to vary for the next itera-
tion. When no more improvement in the objective function is possible, the
algorithm is terminated. This strategy leads to the identification of a local
solution.

The basic and nonbasic sets are initialized through the solution of con-
tinuous relaxation of the NLP. The solution obtained must then be rounded
to a feasible integer solution through a heuristic approach. The feasibility
approach has been tested on two types of large-scale problems: quadratic as-
signment and gas pipeline network design. The second problem poses more
difficulties as few variables are at either of their bounds when the continu-
ous relaxation is solved. Therefore, the problem has relatively few nonbasic
variables. This trend is preserved throughout the run, thus increasing the
computational complexity of each iteration.

3.10 Logic Based Approach

An alternative to the direct solution of the MINLP problem was proposed
by [TG96]. Their approach stems from the work of [KG89] on a mod-
eling/decomposition strategy which avoids the zero-flows generated by the
non-existence of a unit in a process network. The first stage of the algorithm
is the reformulation of the MINLP into a generalized disjunctive program of
the form:

min fl®)+ > ¢

s.t. glz) < 0
Y; -Y;
hi(z)<0 | VvV | Bx=0|i€D
¢ =i ¢i=0 (33)
QY) = True
XCR?
0

"<nt~3
m IV m

{True, False}?

where c is the variable vector representing fixed charges, x is the vector rep-
resenting all other continuous variables (flowrates, temperatures, ... ) and
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Y is the vector of Boolean variables, which indicate the status of a disjunc-
tion (True or False) and are associated with the units in the network. The
set of disjunctions D allows the representation of different configurations,
depending on the existence of the units. Q(Y") is the set of logical relation-
ships between the Boolean variables, representing the interactions between
different network units. Instead of resorting to binary variables within a
single model, the disjunctions are used to generate a different model for
each different network structure. Since all continuous variables associated
with the non-existing units are set to 0 (B'z = 0, ¢ = 0), this representation
helps to reduce the size of the problems to be solved.

Two algorithms are suggested by [T'G96] in order to solve problems such

as (33). They are modifications of the Outer Approximation and Generalized
Benders Decomposition presented in Sections 3.2 and 3.1 respectively.

3.10.1 Logic-Based Outer Approximation

In the case of disjunctive programming, the primal problem is obtained
simply by fixing all the Boolean variables to a combination k of True and
False, yielding an NLP problem of the form:

min  f(z) +3 ¢
st. g(z) <0

7
{ h (:1:_) S. 0 for Yi’c = True
Ci = (34)

G
{ B :1:_— for Yi’c = False

The master problem is a disjunctive linear program. If X NLP problems
have been solved, the nonlinear part of the objective and the nonlinear
inequality constraints which are not part of disjunctions are linearized at
the K solutions. The nonlinear constraints appearing in the ith disjunction
are linearized at the solutions of the NLPs belonging to the subset K? =
{k|Y}¥ = True,k = 1,... ,K}. The master problem is then expressed as:
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min HOA + Z Ci
s.t. f(x*) + Vf(zF)(z — =)
g(z*) + Vg(a*)(z — z*)

Y
hi(z*) + Vhi(zF)(z — z*) <0
Ci =7
oY)
z
c
Y

IAIA

<

mIiv m

pon, k=1,... K
0, k=1,....K
—Y;

Biz =0
C; =0

True

XCR®

0

{True, False}?

1€D

(35)

This type of problem can be solved as a disjunctive problem [Bea90],

or as an MILP [Bal85, RG94]. To ensure that all nonlinear disjunction
constraints are present in the master problem at every iteration, several
NLPs must be solved at the start of the algorithm. The structures to be
optimized are chosen in such a way that each Boolean variable is True in
at least one structure. A method for identifying the minimum number of
combinations required to satisfy this condition has been developed [TG96].

The algorithmic procedure for the logic-based outer approximation al-

Step 0

gorithm is very similar to the original outer approximation algorithm:

Formulate the generalized disjunctive program of the form (33).

Step 1

Set the counter: £k =1

Set the lower bound: LBD = —oc
Set the upper bound: UBD = +oc
Set the convergence tolerance: € > 0

Determine the minimum set of structures needed to obtain cuts for all

constraints. Generate the corresponding NLPs.
Step 2

Solve the NLP(s) for the fixed Boolean variables.

Obtain the optimal & and ¢ vectors.

If the optimal solution of the NLP is less than the
current upper bound, update the upper bound.

Step 3

39



Construct and solve the master problem.
Obtain its solution and Y**!
If the solution of the master is greater than the current lower bound
Update the lower bound.
IfUBD —-LBD<e
Terminate
Else
Update the counter: k =k + 1
Go to step 2

3.10.2 Logic-Based Generalized Benders Decomposition

The Generalized Benders Decomposition framework is not as readily adapted
to disjunctive programming as the Outer Approximation. The master prob-
lem is generated according to the following scheme:

1. Construct a master problem, as was done for the logic-based OA al-
gorithm (Problem (35)).

2. Transform the problem to an MILP.

3. Based on the values used for the Boolean variables in the previous
NLPs, fix the binary variables: LPs are obtained.

4. Solve the LPs and obtain the values of the Lagrange multipliers for
the constraints and the optimal continuous variables values.

5. Use these to construct an MILP problem: this is the master problem
for the logic-based GBD.

Both algorithms identify the global solution of problems which are convex
for all combinations of the Boolean variables.

4 Global Optimization for Nonconvex MINLPs

The algorithms discussed so far have a major limitation when dealing with
nonconvex problems. While identification of the global solution for convex
problems can be guaranteed, a local solution is often obtained for nonconvex
problems. A number of algorithms that have been developed to address
different types of nonconvex MINLPs are presented in this section.
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4.1 Branch-and-reduce algorithm

[RS95] extended the scope of branch-and-bound algorithms to problems for
which valid convex underestimating NLPs can be constructed for the non-
convex relaxations. The range of application of the proposed algorithm
encompasses bilinear problems and separable problems involving functions
for which convex underestimators can be built [McC76, AK90]. Because the
nonconvex NLP must be underestimated at each node, convergence can only
be achieved if the continuous variables are branched on. A number of tests
are suggested to accelerate the reduction of the solution space. They are
summarized here.

Optimality Based Range Reduction Tests For the first set of tests, an
upper bound U on the nonconvex MINLP must be computed and a convex
lower bounding NLP must be solved to obtain a lower bound L. If a bound
constraint for variable x;, with wZL <z < wZU, is active at the solution of the
convex NLP and has multiplier A} > 0, the bounds on x; can be updated as
follows:

1. If ¢; — sz = 0 at the solution of the convex NLP and k; = xf] - 5=

L L

is such that x; > z;*, then z; = &;.

2. If ¢; — :ch = 0 at the solution of the convex NLP and k; = le + %

U

is such that r; < z7, then z¥ = ;.

If neither bound constraint is active at the solution of the convex NLP for
some variable z;, the problem can be solved by setting z; = :1:51 or r; = :B]L .
Tests similar to those presented above are then used to update the bounds

on ]Ij.

Feasibility Based Range Reduction Tests In addition to ensuring
that tight bounds are available for the variables, the constraint underesti-
mators are used to generate new constraints for the problem. Consider the
constraint g;(z,y) < 0. If its underestimating function g (z,y) = 0 at the
solution of the convex NLP and its multiplier is 4] > 0, the constraint

U-L
i

can be included in subsequent problems.
The branch-and-reduce algorithm has been tested on very small prob-
lems.
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4.2 Interval Analysis Based Algorithm

An algorithm based on interval analysis was proposed by [VEH96] to solve to
global optimality problems of the form (2) with a twice-differentiable objec-
tive function and once-differentiable constraints. Interval arithmetic allows
the computation of guaranteed ranges for these functions [Moo79, RR88,
Neu90]. Although the algorithm is not explicitly described as a branch-and-
bound approach, it relies on the same basic concepts of successive parti-
tioning of the solution space and bounding of the objective function within
each domain. Branching is performed on the discrete and the continuous
variables. The main difference with the branch-and-bound algorithms de-
scribed in Section 3.7 is that bounds on the problem solution in a given
domain are not obtained through optimization. Instead, they are based on
the range of the objective function in the domain under consideration, as
computed with interval arithmetic. As a consequence, these bounds may be
quite loose and efficient fathoming techniques are required in order to en-
hance convergence. [VEH96] suggest a number of tests to determine whether
the optimal solution lies in the current domain. In addition, they propose
branching strategies based on local solutions to the problem. In order to
avoid combinatorial problems, integrality requirements for the discrete vari-
ables are removed when performing interval calculations. Convergence is
declared when best upper and lower bounds are within a pre-specified toler-
ance and when the width of the corresponding region is below a pre-specified
tolerance.

4.2.1 Node Fathoming Tests for Interval Algorithm

The upper-bound test is a classical criterion used in all branch-and-bound
schemes: if the lower bound for a node is greater than the best upper bound
for the MINLP, the node can be fathomed.

The infeasibility test is also used by all branch-and-bound algorithms.
However, the identification of infeasibility using interval arithmetic differs
from its identification using optimization schemes. Here, an inequality con-
straint g;(x,y) < 0 is declared infeasible if G;(X,Y), its inclusion over the
current domain, is positive. As soon as a constraint is found to be infeasible,
the current node is fathomed.

The monotonicity test is only used in interval-based approaches. If a
region is feasible, the monotonicity properties of the objective function can
be tested. For this purpose, the inclusions of the gradients of the objective
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with respect to each variable are evaluated. If all the gradients have a
constant sign for the current region, the objective function is monotonic
and only one point needs to be retained from the current node.

The nonconvezity test is used to test the existence of a solution (local
or global) within a region. If such a point exists, the Hessian matrix of the
objective function at this point must be positive semi-definite. A sufficient
condition for this to occur is the non-negativity of at least one of the diagonal
elements of its interval Hessian matrix. The interval Hessian matrix is the
inclusion of a Hessian matrix computed for a given domain.

[VEH96] advocate two additional tests to accelerate the fathoming pro-
cess. The first is the so-called lower bound test. It requires the computation
of a valid lower bound on the objective function through a method other
than interval arithmetic. If the upper bound at a node is less than this
lower bound, the region can be eliminated. The generation of such an upper
bound may occur in an interval-based approach as the constraints are not
used when evaluating the objective. Thus, a region may be found feasible
because of the overestimation inherent in interval calculations, and have an
upper bound lower than the optimal solution. For general problems, the
computation of a valid and tight lower bound on the objective function re-
quires the use of rigorous convex lower bounding techniques such as those
described in Section 4.5.

The second test, the distrust-region method, aims to help the algorithm
identify infeasible regions so that they can be removed from consideration.
Based on the knowledge of an infeasible point, interval arithmetic is used to
identify an infeasible hypercube centered on that point.

4.2.2 Branching Step

The variable with the widest range is selected for branching. It can be a
continuous or a discrete variable. In order to determine where to split the
chosen variable, a relaxation of the MINLP is solved locally.

Continuous Branching Variable If the optimal value of the continuous
branching variable, z*, is equal to one of the variable bounds, branch at the
midpoint of the interval. Otherwise, branch at z* — 8, where  is a very
small scalar.

Discrete Branching Variable If the optimal value of the continuous
branching variable, y*, is equal to the upper bound on the variable, define
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a region with y = y* and one with y* < y < y* — 1, where y” is the
lower bound on y. Otherwise, create two regions y* < y < int(y*) and
int(y*) +1 <y < yY, where yV is the upper bound on .

This algorithm has been tested on a small example problem and a molec-
ular design problem [VEH96].

4.3 Extended Cutting Plane for Nonconvex MINLPs

The use of the ECP algorithm for nonconvex MINLP problems was suggested
in [WPG94], using a slightly modified algorithmic procedure. The main
changes occur in the generation of new constraints for the MILP at each
iteration (Step 4). In addition to the construction of the linear function
lx(x,y) at iteration k, the following steps are taken:

1. Remove all constraints for which I;(z*, y*) > g;, (z¥, y*). These corre-
spond to linearizations which did not underestimate the corresponding
nonlinear constraint at all points due to the presence of nonconvexities.

2. Replace all constraints for which I;(z*, y*) = g;,(z*,y*) = 0 by their
linearization around (z*, y*).

3. If constraint i is such that g;(x*, y*) > 0, add its linearization around
(=%, y").

The convergence criterion is also modified. In addition to the test used
in Step 3, the following two conditions must be met:

1. (zF —z*1)T(zF — £*¥~1) < 4, a pre-specified tolerance.
2. ybF —yF-1 =0.

The ECP algorithm has been used to address a nonlinear pump configu-
ration problem [WPG94], where it was found to give good results for convex
one-level problems, and to perform poorly for nonconvex problems. It has
also been tested on a small convex MINLP from [DG86]. Finally, a com-
parative study between the Quter Approximation, the Generalized Benders
Decomposition and the Extended Cutting Plane algorithm was presented in
[SHW'96]. A parameter estimation problem from FTIR spectroscopy and
a purely integer problem were addressed.
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4.4 Reformulation/Spatial Branch-and-Bound Algorithm

A global optimization algorithm branch-and-bound algorithm has been pro-
posed in [SP97]. It can be applied to problems in which the objective and
constraints are functions involving any combination of binary arithmetic op-
erations (addition, subtraction, multiplication and division) and functions
that are either concave over the entire solution space (such as In) or convex
over this domain (such as exp).

The algorithm starts with an automatic reformulation of the original
nonlinear problem into a problem that involves only linear, bilinear, linear
fractional, simple exponentiation, univariate concave and univariate convex
terms. This is achieved through the introduction of new constraints and vari-
ables. The reformulated problem is then solved to global optimality using
a branch-and-bound approach. Its special structure allows the construction
of a convex relaxation at each node of the tree. The integer variables can
be handled in two ways during the generation of the convex lower bounding
problem. The integrality condition on the variables can be relaxed to yield
a convex NLP which can then be solved globally. Alternatively, the integer
variables can be treated directly and the convex lower bounding MINLP can
be solved using a branch-and-bound algorithm as described in Section 3.7.
This second approach is more computationally intensive but is likely to re-
sult in tighter lower bounds on the global optimum solution.

In order to obtain an upper bound for the optimum solution, several
methods have been suggested. A local MINLP algorithm as those described
in Section 3 can be used. The MINLP can be transformed to an equivalent
nonconvex NLP by relaxing the integer variables. For example, a variable
y € {0,1} can be replaced by a continuous variable z € [0,1] by including
the constraint z — z - z = 0. The nonconvex NLP is then solved locally to
provide an upper bound. Finally, the discrete variables could be fixed to
some arbitrary value and the nonconvex NLP solved locally.

Branching variables in this algorithm can be either continuous or dis-
crete variables. An “approximation error” is computed for each term in
the problem as the distance between the original term and its convex relax-
ation. A variable that participates in the term with the largest such error
is selected for branching. Finally, the authors perform bound updates on
all variables in order to ensure tight underestimators are generated. This
algorithm has been applied to several problems such as reactor selection,
distillation column design, nuclear waste blending, heat exchanger network
design and multilevel pump configuration.
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4.5 The SMIN-aBB Algorithm

This algorithm, proposed in [AAF7a], is designed to address the following
class of problems to global optimality:

min f(z)+zT Aoy + cly

st. h(z)+zTAiy+cly = 0
glz)+zlAsy+cly < 0 (36)
z € XCR"
y € Yinteger

where ¢, ¢! and ¢l are constant vectors, Ay, A; and As are constant
matrices and f(xz), h(x) and g(x) are functions with continuous second-
order derivatives.

The solution strategy for problems of type (36) is an extension of the
aBB algorithm for twice-differentiable NLPs [AMF95, AF96, ADFN97]. It
is based on the generation of two converging sequences of upper and lower
bounds on the global optimum solution. A rigorous underestimation and
convexification strategy for functions with continuous second-order deriva-
tives allows the construction of a lower bounding MINLP problem with
convex functions in the continuous variables. If no mixed-bilinear terms are
present (A; = 0,Vi), the resulting MINLP can be solved to global optimal-
ity using the Outer Approximation algorithm (OA) described in Section 3.2.
Otherwise, the Generalized Benders Decomposition (GBD) can be used, as
discussed in Section 3.1, or the Glover transformations [Glo75] can be ap-
plied to remove these bilinearities and permit the use of the OA algorithm.
This convex MINLP provides a valid lower bound on the original MINLP.
An upper bound on the problem can be obtained by applying the OA al-
gorithm or the GBD to problem (36) to find a local solution. This bound
generation strategy is incorporated within a branch-and-bound scheme: a
lower and upper bound on the global solution are first obtained for the entire
solution space. Subsequently, the domain is subdivided by branching on a
binary or a continuous variable, thus creating new nodes for which upper
and lower bounds can be computed. At each iteration, the node with the
lowest lower bound is selected for branching. If the lower bounding MINLP
for a node is infeasible or if its lower bound is greater than the best upper
bound, this node is fathomed. The algorithm is terminated when the best
lower and upper bound are within a pre-specified tolerance of each other.
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Before presenting the algorithmic procedure, an overview of the under-
estimation and convexification strategy is given, and some of the options
available within the algorithm are discussed.

4.5.1 Convex Underestimating MINLP Generation

In order to transform an MINLP problem of the form (36) into a convex
problem which can be solved to global optimality with the OA or GBD
algorithm, the functions f(z), h(xz) and g(x) must be convexified. The
underestimation and convexification strategy used in the aBB algorithm
has previously been described in detail [AAMF96, AF96, ADFN97]. Its
main features are exposed here.

In order to construct as tight an underestimator as possible, the non-
convex functions are decomposed into a sum of convex, bilinear, univariate
concave and general nonconvex terms. The overall function underestimator
can then be built by summing up the convex underestimators for all terms,
according to their type. In particular, a new variable is introduced to re-
place each bilinear term, and is bounded by the convex envelope of the term
[AKF83]. The univariate concave terms are linearized. For each nonconvex

term nt(x) with Hessian matrix H,;(x), a convex underestimator L(z) is
defined as

L(z) = nt(z) — Z ai(zf — @) (x; — xf) (37)

where xZU and wZL are the upper and lower bounds on variable x; respectively
and the o parameters are nonnegative scalars such that Hp(x)+2diag(cq;) is
positive semi-definite over the domain [z, £V]. The rigorous computation of
the a parameters using interval Hessian matrices is described in [AAMF96,
AF96, ADFN97].

The underestimators are updated at each node of the branch-and-bound
tree as their quality strongly depends on the bounds on the variables.

4.5.2 Branching Variable Selection

An unusual feature of the SMIN-aBB algorithm is the strategy used to
select branching variables. It follows a hybrid approach where branching
may occur both on the integer and the continuous variables in order to fully
exploit the structure of the problem being solved. After the node with the
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lowest lower bound has been identified for branching, the type of branching
variable must be determined according to one of the following two criteria:

1. Branch on the binary variables first.

2. Solve a continuous relaxation of the nonconvex MINLP locally. Branch
on a binary variable with a low degree of fractionality at the solution.
If there is no such variable, branch on a continuous variable.

The first criterion results in the creation of an integer tree for the first ¢
levels of the branch-and-bound tree, where ¢ is the number of binary vari-
ables. At the lowest level of this integer tree, each node corresponds to a
nonconvex NLP and the lower and upper bounding problems at subsequent
levels of the tree are NLP problems. The efficiency of this strategy lies in
the minimization of the number of MINLPs that need to be solved. The
combinatorial nature of the problem and its nonconvexities are handled se-
quentially. If branching occurs on a binary variable, the selection of that
variable can be done randomly or by solving a relaxation of the nonconvex
MINLP and choosing the most fractional variable at the solution.

The second criterion selects a binary variable for branching only if it
appears that the two newly created nodes will have significantly different
lower bounds. Thus, if a variable is close to integrality at the solution of
the relaxed problem, forcing it to take on a fixed value may lead to the
infeasibility of one of the nodes or the generation of a high value for a lower
bound, and therefore the fathoming of a branch of the tree. If no binary
variable is close to integrality, a continuous variable is selected for branching.

A number of rules have been developed for the selection of a continuous
branching variable. Their aim is to determine which variable is responsible
for the largest separation distances between the convex underestimating
functions and the original nonconvex functions. These efficient rules are
exposed in [AAFT7b].

4.5.3 Variable Bound Updates

Variable bound updates performed before the generation of the convex
MINLP have been found to greatly enhance the speed of convergence of the
aBB algorithm for continuous problems [AAF7b]. For continuous variables,
the variable bounds are updated by minimizing or maximizing the chosen
variable subject to the convexified constraints being satisfied. In spite of its
computational cost, this procedure often leads to significant improvements
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in the quality of the underestimators and hence a noticeable reduction in
the number of iterations required.

In addition to the update of continuous variable bounds, the SMIN-aBB
algorithm also relies on binary variable bound updates. Through simple
computations, an entire branch of the branch-and-bound tree may be elimi-
nated when a binary variable is found to be restricted to 0 or 1. The bound
update procedure for a given binary variable is as follows:

1.

2.

Set the variable to be updated to one of its bounds y = yp.

Perform interval evaluations of all the constraints in the nonconvex
MINLP, using the bounds on the solution space for the current node.

If any of the constraints are found infeasible, fix the variable to y =
1—ygp.

If both bounds have been tested, repeat this procedure for the next
variable to be updated. Otherwise, try the second bound.

4.5.4 Algorithmic Procedure

The algorithmic procedure for the SMIN-aBB algorithm is formalized as
follows:

Step 1

Set absolute tolerance ¢; set LBD* = —oo and UBD* = cc.
Set node counter k£ = 0.

initialize set of nodes to be bounded, J = {0};

N, the list of nodes to be explored, is empty.

Step 2 Bounding

For each node Nj,j € J:
Perform variable bound updates if desired.
Generate a convex lower bounding MINLP.
Solve convex MINLP using OA or GBD. Solution is LBD;.
If MINLP is infeasible, fathom the current node.
If LBD; < UBD*, add the current node to N.
Else, fathom the current node.

Step 3

Set LBD* to the lowest lower bound from the list IN.
If UBD* — LBD* < ¢, terminate with solution U BD*.
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Otherwise, proceed to Step 4.

Step 4 Branching

Select the node from the list IN with the lowest lower bound for
branching, N; (i < k),

Its lower bound is LBD;.

Select a branching variable y? or zB.

Create two new regions N1 and Ni,o.

Set J={k+1,k+2} and k = k + 2. Go back to Step 2.

4.6 The GMIN-aBB algorithm

This algorithm operates within a classical branch-and-bound framework as
described in Section 3.7. The main difference with the algorithms of [GR85],
[OOM90] and [BM91] is its ability to identify the global optimum solution
of a much larger class of problems of the form

min  f(x,y)
T,y

st. h(z,y) = O
glz,y) < 0 (38)
r € XCR
y € N1

where N is the set of non-negative integers and the only condition imposed
on the functions f(z,y), g(x,y) and h(z,y) is that their continuous relax-
ations possess continuous second-order derivatives.

This increased applicability results from the use of the BB global opti-
mization algorithm for continuous twice-differentiable NLPs [AMF95, AF96,
ADFN97]. The basic concepts behind the aBB algorithm were exposed in
Section 4.5.

At each node of the branch-and-bound tree, the nonconvex MINLP is
relaxed to give a nonconvex NLP, which is then solved with the BB algo-
rithm. This allows the identification of rigorously valid lower bounds and
therefore ensures convergence to the global optimum. In general, it is not
necessary to let the aBB algorithm run to completion as each one of its iter-
ations generates a lower bound on global solution of the NLP being solved.
A strategy of early termination leads to a reduction in the computational
requirements of each node of the binary branch-and-bound tree and faster
overall convergence.

The GMIN-aBB algorithm selects the node with the lowest lower bound
for branching at every iteration. The branching variable selection strategy
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combines several approaches: branching priorities can be specified for some
of the integer variables. When no variable has a priority greater than all
other variables, the solution of the continuous relaxation is used to iden-
tify either the most fractional variable or the least fractional variable for
branching.

Other strategies have been implemented to ensure a satisfactory con-
vergence rate. In particular, bound updates on the integer variables can
be performed at each level of the branch-and-bound tree. These can be
carried out through the use of interval analysis. An integer variable, y*,
is fixed at its lower (or upper) bound and the range of the constraints is
evaluated with interval arithmetic, using the bounds on all other variables.
If the range of any constraint is such that this constraint is violated, the
lower (or upper) bound on variable y* can be increased (or decreased) by
one. Another strategy for bound updates is to relax the integer variables,
to convexify and underestimate the nonconvex constraints and to minimize
(or maximize) a variable y* in this convexified feasible region. The resulting
lower (or upper) bound on relaxed variable y* can then be rounded up (or
down) to the nearest integer to provide an updated bound for y*.

A number of small nonconvex MINLP test problems as well as the pump
configuration problem of [WPG94] have been solved using this strategy.

5 Implementation: MINOPT

Although there are a number of algorithms available for the solution of
MINLPs, there are relatively few implementations of these algorithms. The
recent advances in the development of these algorithms has led to several
automated implementations of these MINLP algorithms.

The earliest implementations make use of the modeling system GAMS
[BKM92] which allows algebraic model representation and automatic inter-
facing with linear, nonlinear and mixed integer linear solvers. The algorith-
mic procedure, APROS [PF89], was developed for the automatic solution
of mathematical programming problems involving decomposition techniques
such as those used in the solution of MINLPs. APROS is an implemen-
tation of GBD and OA in GAMS where the modeling language is used
to generate the NLP and MILP subproblems which are solved through the
GAMS interface. GAMS also includes a direct interface to an implementa-
tion of OA/ER in the package DICOPT++4 [VG90]. The model can be
written algebraically as an MINLP and the solver will perform the necessary
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decomposition.

More recently, a framework MINOPT [SF97b] has been developed for
the solution of general mathematical programming problems. The primary
motivation for the development of MINOPT (Mixed Integer Nonlinear OP-
Timizer) was to provide a user friendly interface for the solution of MINLPs.
The development has expanded to include an interface for solving many
classes of problems which include both algebraic and differential models.
The next section describes this package in more detail and includes the
results of its application to a number of example problems.

MINOPT has been developed as a framework for the solution of var-
ious classes of optimization problems. Its development has been brought
about by the particular need for implementations of algorithms applicable
to MINLPs. Further development has been done to address the solution
of problems which involve dynamic as well as algebraic models. Extensive
development of MINOPT has led to a highly developed computational tool.

MINOPT has a number of features including:

e Extensive implementation of optimization algorithms

Front-end parser

Extensive options

Expandable platform
e Interface routines callable as a subroutine

MINOPT is capable of handling a wide variety of problems described
by the variable and constraint types employed. MINOPT handles the
following variable types:

e continuous time invariant
e continuous dynamic
e control
e integer
and recognizes the following constraint types:
e linear

e nonlinear
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e dynamic
e dynamic path
e dynamic point

Different combinations of variable and constraint types lead to the following
problem classifications:

e Linear Program (LP)

e Nonlinear Program (NLP)

e Mixed Integer Linear Program (MILP)

e Mixed Integer Nonlinear Program (MINLP)

e Nonlinear Program with Differential and Algebraic Constraints
(NLP/DAE)

e Mixed Integer Nonlinear Program with Differential and Algebraic Con-
straints (MINLP/DAE)

e Optimal Control Program (OCP)
e Mixed Integer Optimal Control Program (MIOCP)

The MINOPT program has two phases: problem entry and problem
solution. During the first phase MINOPT reads the input from a file, saves
the problem information, and then determines the structure and consistency
of the problem by analyzing the constraints and variables. After the problem
has been entered, MINOPT proceeds to the second phase to solve the
problem. Based on the problem structure determined by MINOPT and
options supplied by the user, MINOPT employs the appropriate algorithm
to solve the problem.

The entry phase of MINOPT features a parser which reads in the dy-
namic and/or algebraic problem formulation from an input file. The input
file has a clear syntax and allows the user to enter the problem in a concise
form without needing to specify the steps of the algorithm. The input file
includes information such as variable names, variable partitioning (continu-
ous, integer, dynamic), parameter definitions, and option specifications. The
parser features index notation which allows for compact model representa-
tion. The parser allows for general constraint notation and has the ability
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to recognize and handle the various constraint types (i.e. linear, nonlinear,
dynamic, point, path) and ultimately the overall structure of the problem.
The MINOPT parser also determines the necessary analytical Jacobian
information from the problem formulation.

The solution phase of MINOPT features extensive implementations
of numerous optimization algorithms. Once the parser has determined the
problem type, the solution phase applies the appropriate method to solve the
problem. MINOPT utilizes available software packages for the solution of
various subproblems. The solution algorithms implemented by MINOPT
are listed in Table 1. The solution algorithms implemented by MINOPT
are callable as subroutines from other programs.

Table 1: Solution algorithms implemented by MINOPT

Problem | Algorithm Solver
Type
LP Simplex method CPLEX
MINOS
LSSOL
MILP Branch and Bound CPLEX
NLP Augmented Lagrangian/Reduced Gradient | MINOS
Sequential Quadratic Programming NPSOL
Sequential Quadratic Programming SNOPT
Dynamic | Integration (Backward Difference) DASOLV
Optimal | Control Parameterization DAEOPT
Control
MINLP | Generalized Benders Decomposition MINOPT
Outer Approximation/Equality Relaxation | MINOPT
Outer Approximation/Augmented Penalty | MINOPT
Generalized Cross Decomposition MINOPT

MINOPT has an extensive list of options which allows the user to fine
tune the various algorithms.

e selection of different algorithms for a problem type
e selection of parameters for various algorithms

e solution of the relaxed MINLP
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Figure 4: Program flow for MINOPT

auto-initialization procedure—relaxed MINLP solved to determine the
starting values for the y-variables.

integer cuts for the GBD algorithm

radial search technique for problems with discrete and continuous y

variables (GBD)

alternative feasibility formulation for infeasible primal

solution of the GBD master problem in terms of both & and y rather

than in y alone

specification of parameters for external solvers

The flow of the program is described in Figure 4. The program is invoked
from the command line and parses the input file and stores the information
into a problem structure. The program then determines the appropriate
method to solve the problem based on the problem type and options provided
by the user. Based on the algorithm and parameters, MINOPT solves the
problem by formulating and solving various subproblems. When needed,
MINOPT draws necessary information from the problem structure.
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The code for MINOPT has been written in portable ANSI C and can
be compiled on any computer. MINOPT has been developed with an
expandable platform in both the entry and solution phases of the program.
This parser can be expanded to recognize additional options, variable types,
commands, and constraint types that may be required of an algorithm. The
solution phase of the program can be expanded to implement additional
algorithms should they become available.

6 Computational Studies

There are numerous MINLP problems that arise in process synthesis and
design. MINOPT has been used as a computational tool to solve a wide
variety of these problems including heat exchanger network synthesis prob-
lems, design and scheduling of multipurpose batch plants, reactor network
synthesis, multicommodity facility location-allocation problems, parameter
estimation, and distillation sequencing problems. The computational results
for these problems run on a Hewlett Packard 9000/780 (C-160) are shown
in Table 2.

Two computational examples are selected from the area of process syn-
thesis. Both of these examples illustrate the use of a superstructure, the
mathematical modeling of the superstructure as well as the implementation
of an appropriate algorithm to solve the problem. The first problem is a
distillation sequencing problem and the second is a heat exchanger network
synthesis problem.

6.1 Distillation Sequencing

The distillation sequencing problem is to determine the configuration of
a separation system which will separate a given feed stream into desired
products which meet desired specifications. The details for the problem
description and model formulation can be found in [AF90].

The input flowrate and composition are given along with the desired
product flowrates and compositions. The problem is to determine the flow-
rates and compositions of the streams and the interconnection of distillation
units which minimizes the annualized cost. The superstructure postulating
two distillation units for one input and two outputs is shown in Figure 5.

The continuous variables for the problem are the flowrates, F', the mole
fractions, =, and the recoveries for the light key and heavy key, r'* and
"% The binary variables represent the existence of a distillation column, ¥.
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Table 2: Computational Results

Problem X Y Z L N T ITER CPU TIME
gbd_test 1 3 - 4 1 D 2/2/2  0.06/0.06/0.06
oaer_test 6 3 - 5 2 D 3/2/3 0.18/0.25
ap_test 2 1 - 3 1 D 2/-/2 0.07/-/0.07
minutil 206 - - 87T - A 0.09
minmatch 82 18 - 129 - B 0.11

plan 22 - - 14 - A 0.05
schedule 12 16 - 2t - B 0.13
batdes 10 9 - 18 2 D 5/2/2  0.28/0.12/0.13
complex 8 3 10 - B 0.08

alky 10 -3 5 C 1.8

cart 6 - 4 3 4 E 0.63
param 12 - 2 1 10 E 4.38
feedtray 93 9 - 34 62 D 2/2/2 1.43/1.74/5.38
procsel 7 3 - 6 2 D 6/4/3 0.31/0.27/0.28
alan 4 4 - 7 1 D 8/4/6  0.20/0.12/0.17
facilityl 6 6 - 18 1 D 3/3/4  0.14/0.17/0.21
facility2 54 12 - 33 1 D 5/5/7 0.43/0.73/0.97
ciricl 5 1 - 6 1 C 15/-/- 0.29/-/-
duran86-1 3 3 - 4 3 D 4/4/4  0.27/0.28/0.24
duran86-2 6 5 - 11 4 D 8/4/3 1.16/0.50/0.40
duran86-3 9 8 - 19 5 D 14/4/7  3.24/0.66/1.30
duran86-4 5 25 - 6 26 D 69/2/11 42.1/0.4/38.50
kocis88-4a 16 6 - 60 2 D 16/-/- 3.74/-/-
kocis88-4b 22 24 - 72 2 D 31/4/3 20.28/1.86/0.89
kocis89-2a 27 2 - 29 6 D 3/3/2  0.54/0.57/0.50
kocis89-2b 27 8 - 34 1 D 3/-/- 0.55
meanvl 21 14 - 44 1 D 10/4/3  0.48/0.33/0.26
meanv2 28 14 - 51 1 D 7/2/3  0.35/0.21/0.28
nousl 22 28 - 49 1 D 12/-/- 2.38/-/-
vdv 22 14 4 21 8 F 2/-)- 16.02/-/-
bindis 72 60 114 67 4 F 4/3/- 2860.0/2100.0/-

X,Y,Z,L, N and T indicate the number of z, y, and z variables, number of linear
and nonlinear constraints and the type of the problem (A-LP, B-MILP, C-NLP, D-
MINLP, E-NLP/DAE, F-MINLP/DAE). ITER and CPU TIME indicate the num-
ber of iterations and cpu time for the MINLP problems (GBD/OAER/OAERAP).
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Figure 5: Superstructure for Nonsharp Separation System

The derivation of the mathematical model involves a number of indices and
sets. The index set I = {i} denotes components, N = {k} denotes streams,
J = {j} denote columns, S = {s} denote splitters, M = {m°} denote the
mixers prior to each column, M/ = {mf} denote final mixers prior to each
product, and P = {p} denote the products. The splitter s° € S represents
the initial splitting point of the feed stream. The following sets are defined
for the connection of the sets of splitters and mixers with the streams in the
superstructure.

Sin = {l|l € N is an inlet to splitter s} s € S

Sout = {I|]l € N is an outlet from splitter s} s € S
M™ = {l|l € N is an inlet to mixer m/} m/ e M7S
Mo% = {l|l € N is an outlet to mixer m¢} m¢ € M¢
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The inlet and outlet streams of the column are given by the following:

SU; = {n|n € N is the inlet to column 5} j € J
SUP = {p|lp € N is the top product of column j} j € J
SU; ot = fg|g € N is the bottom product of column j} j € J

The key components for the column are given by the following:

LK;
HK;

LHK;
HLK;

ND;,

{i|]? € I is the light key for column j} j € J

{i|t € I is the heavy key for column j} j € J

{i|i € I is lighter than the heavy key for column j} j € J
{i|i € I is heavier than the light key for column j} j € J
{i|i € I is not present in stream k} i € [,k € N

The problem formulation from [AF90] follows.

min

s.t.

jeJ
> Fr— > Fe=0
keSin keSgout

fin — Fpnin =0
in — prip — Fq.’L'iq =0

> Fzyg— > fa=0
leMin, le Moyt
Zip =0
> —Cip =0
leM:':f
Z Tik — 1
i€l
Fr—Uy; <0
Fp—F,—F,=0

) {009' + (a1j + agyrls + az;rih + 3 bijmik)Fk}
i€l

i€ LK;,i' € HK;,k € SU;
ses

i€ LK;neSU;peSUCP jeJ
i € LKj,n € SUj,q € SUP j e J
i € I,n € SU;
iel,jeJneSU;,

p e SUPP, ¢ e sUPot

i€ I,mteMe

(Zak)eNDzk

i1el,peP

ke S
Jj € J ke SU;
ne€SU;,p € SU;OP,q € SU;-bOt
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> F— Y F=0 m¢eM°

leMin, leMoyt
> F =Y Cy pePiel
z’eM::f i
> fu—F l € SU;
2
Fi— > fin— 2 =) fin <0
i€ LHK; i€HK;

n € 8U;,1 € SUP
F— Y fu- ¥ 01— 0% <0

i€HLK; i€LK;
n € SU;,1 € SUPO
Fi>0fin >0 i€l,ne N,neSU;
zik > 0 i € Ik € (SU; U SU°P u sUPot)
(r*VE < plk < (ptYU i€ LK;,j€J

1] — 7
() < B < (IR i€ HEG j e
The data for the problem are taken from Example 2 in [AF90].

The nonlinearities in the problem are due to bilinear terms. Some of the
continuous variables in the problem are partitioned as y variables along with
the binary variables such that the primal problem is linear and thus convex.
Since the y variables consist of both continuous and binary variables, the
GBD algorithm must be used.

The problem is solved using MINOPT which incorporates a radial
search algorithm into the GBD algorithm. This option specifies that the full
NLP problem with only the binary variables fixed is solved after each primal
problem. The algorithm converges in 3 iterations and takes 1.36 seconds of
CPU time on a Hewlett Packard 9000/780 (C-160). The optimal sequence
utilizes a single column and the optimal flowsheet is shown in Figure 6.

6.2 Heat Exchanger Network Synthesis

The design of a heat exchanger network involving two hot streams, two cold
streams, one hot and one cold utility is studied. The formulation of [YG91]
is used. The annualized cost of the network is expressed as the summation
of the utility costs, the fixed charges for the required heat-exchangers and
an area-based cost for each each exchanger. The area is a highly nonlinear
function of the heat duty and the temperature differences at both ends of
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Figure 6: Optimal Flowsheet for the Nonsharp Separation Problem

the heat exchanger. The binary variables, which represent the existence of a
given heat-exchanger, participate linearly in the problem. All the constraints
are linear. This nonconvex MINLP therefore provides an opportunity to test
the SMIN-aBB global optimization algorithm proposed in Section 4.5.

The stream data for the problem are summarized in Table 3. There
are two temperature intervals. The steam utility costs $80/kW-yr and the
cooling water costs $15/kW-yr. The fixed charges for the heat exchangers
amount to $5500/yr. The cost coefficient for the area-dependent part of the
heat exchanger costs is $300/yr. The overall heat transfer coefficients are
0.5 kW/m?K for the hot stream-cold stream units, 0.83333 kW/m?K for
the cold stream-hot utility units and 0.5 kW/m?K for the hot stream-cold
utility units.

The superstructure for this problem is shown in Figure 7. There are 12
possible matches and therefore 12 binary variables. The global optimum
configuration involves six heat exchangers and is shown in Figure 8. Given
the set ST of K temperature locations, the set HP of hot process streams
and the set CP of cold process streams, the general problem formulation is
as follows:
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min ) CeouQcu,i +
iCHP

+ 2 )

i€HP jECP keST

Y. CruQnuu,;

jecpP

t€EHP

Cij Qijr

Y, CFyzijy+ Y, CFicvzcvui+ Y. CFjpvzau,

jecp

+ 2

1
i€HP jECP keST Uij[ATijk AT;jp 41 (AT5j5+ATj541) /2] 3

CicuQcu,i

I
i€HP Ucv,i[ATou,i(Tout,i—Tin,cv ) (ATou,i+Tout,i—Tin,cv ) /2] 3

+ Ci,auQHU,j

1
JECP Unv i [ATHU,j (Tin, U ~Tout,; ) (ATHU,j+Tin, 7 —Tout,; ) /2] 3

(Tmz - outz)Fsz = E
kEST jECP
( out,j — m,j) Fcpj = Z
kEST iCHP
(Tik — Tipt1) Fepi = D Qijk
jeCrP
( s Tjk+1) Fepj = > Qijk
i€EHP
Ting =T
Ting = Tj Kk
Tik 2 Tik+1
Tjr 2> Tjg+1
Tout,i < Ti,K
Tout,j > Tj,l
(cri,K - Tout z) Fcpz QC’UZ
(Tout,j — Tj1) Fepj = Qru;
Qijk — Q255 <0
Qcu,i — Qzcy,; <0
Qv — 2y, <0

Zijkys 2CU> 2HU,j € {0,1}

Tig — Tjg +T(1 — zi55) > ATy

Tik+1 — Tjgr1 + T(1 — zijg) > ATjjx41
Ti k — Tout,cu +T(1 = zcu,) > ATcu,
Touwt,nv — Tj1 +T(1 — zgu,j) > ATgy,;
ATijlc > 10
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Table 3: Stream data for heat exchanger network problem.

Stream | T;;, (K) | Tour (K) | Fep (kW/K)
Hot 1 650 370 10.0
Hot 2 590 370 20.0
Cold 1 410 650 15.0
Cold 2 350 500 13.0
Steam 680 680 —
Water 300 320 —

where the parameters are Coy, the per unit cost of cold utility; Cgy, the
per unit cost of hot utility; C'F, the fixed charged for heat exchangers; C,
the area cost coefficient; Tj,, the inlet temperature of a stream; T,,;, the
outlet temperature; Fcp, the heat capacity flowrate of a stream; 2, the
upper bound on heat exchange; I', the upper on the temperature difference.
The continuous variables are Tj;, the temperature of hot stream ¢ at the
hot end of stage k; T}, the temperature of cold stream j at the cold end of
stage k, Q;;k, the heat exchanged between hot stream 4 and cold stream j
at temperature location k; QQcy,;, the heat exchanged between hot stream i
and the cold utility at temperature location k; QQgy,j, the heat exchanged
between cold stream j and the hot utility at temperature location k; ATy,
the temperature approach for the match of hot stream ¢ and cold stream j
at temperature location k; ATcy,;, the temperature approach for the match
of hot stream 4 and the cold utility at temperature location k; ATxy,;, the
temperature approach for the match of cold stream j and the hot utility at
temperature location k. The binary variables are z;;, for the existence of a
match between hot stream i and cold stream j at temperature location k;
Zcu,i, for the existence of a match between hot stream ¢ and the cold utility
at temperature location k; zgy,;, for the existence of a match between cold
stream j and the hot utility at temperature location k.

Due to the linear participation of the binary variables, the problem can
be solved locally using the Outer Approximation or Generalized Benders
Decomposition algorithms described in Sections 3.2 and 3.1, and globally
using the SMIN-aBB algorithm of Section 4.5.

This problem can be solved locally using MINOPT. For both GBD
and OAER the problem is solved 30 times with random starting values for
the binary variables. The starting values for the continuous variables are
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set to their lower bounds. The results of these runs are shown in Table 4.
Whereas GBD generally takes more iterations than OAER, it converges
to fewer local minima. Both algorithms obtain the global optimum roughly
the same number of times. When random starting values are used for both
the binary and continuous variables, the global optimum is obtained in all
30 runs.

Table 4: Local solutions for Heat Exchanger Network Synthesis problem
obtained with MINOPT

GBD
Local Solutions number of times average number
obtained of iterations
154997 11 16
155510 18 18
161010 1 14
OAER
Local Solutions number of times average number
obtained of iterations
154997 10 3.1
155510 6 3.8
167602 3 6
180848 1 5
189521 1 5
197983 7 3.6
199196 1 5
212678 1 3

6.2.1 Solution Strategy with the SMIN-aBB algorithm

When using the SMIN-aBB algorithm, the area-dependent cost of the heat
exchangers must be underestimated using the general convex lower bounding
function (37), in order to generate valid lower bounds on the objective func-
tion. The Outer Approximation algorithm is used to solve a lower bounding
convex MINLP at each node of the tree. When this MINLP is feasible, an
upper bound on the objective function is obtained by solving the nonconvex
MINLP locally in the same region. For the heat exchanger between hot
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stream % and cold stream 7, the convex underestimator is expressed as
CijQijk )
Ui [Tk ATjk41 (ATijk+ATijr41) /2]
Q U L
- aijk(Qijk - Qijk)(Qijk - Q”k) (40)
AT, U L
- aijk’“(ATijk — ATyk) (AT35k — ATijk)
— AT}jk+1) (AT k41 — ATing)-

ATg11 U
— Qg (ATz'jk—H

Q ATk ATy, . .
where o; ik ik and «; ik are non-negative scalars obtained through

one of the methods described by [AAFT7a]. The convex underestimator for
process stream-utility exchangers is similar, expect that one of the AT’s
is constant and only two a terms are therefore required. At the first level
of the branch-and-bound tree, all binary variables can take on a value of
either 0 or 1. As a result, every nonconvex term in the objective function
must be underestimated to obtain a lower bound valid for the entire solution
space. However, if branching occurs on the binary variables, the existence of
some units is pre-determined for subsequent levels of the branch-and-bound
tree. Thus, if some variable z;;; is fixed to 0 at a node of the tree, proper
updating of the variable bounds yields Q;jx = Qz-Lj = ng = 0. The bounds
on AT and ATjjp+1 become 10 < ATy < T — Tjp + T and 10 <
ATijk+1 < T g1 — Tj g1 + . Since I' is a large number, the convex terms
corresponding the AT’s do not naturally vanish from Equation (40). Even
though unit the area of unit (ijk) is 0, its cost appears in the underestimating
objective function as

+1

AT;
—" (ATgk - fTijk)(ATijk — ATigk) ()
T,
— ;T AT ) — ATyjk) (ATijkgr — AT, ).

In order to eliminate this redundant term, it is therefore necessary to
introduce modified o parameters which account for the non-existence of a
unit. These new parameters are defined as

*,ATk . ATk U

@ik = %k %k (42)
*,ATk+1 aATk+1 ZU
ijk ijk ijk”

where zgk is the current upper bound on variable z;;;. According to Equa-
tion (42), if z; is fixed to 0, its upper bound zgk is 0 and a;’.ﬁTk and
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AT, . ) o
:jk ¥1 vanish. The convex underestimator for unit (ijk) no longer par-

ticipates in the lower bounding objective function. On the contrary, if z;;
is fixed to 1 or remains free to take on the value of 0 or 1, the convex
underestimator is preserved.

This analysis of the objective function emphasizes the importance of the
branching strategy in the generation of tight lower bounds on the objective
function. Several branching strategies were used for this problem. First, the
continuous variables were branched on exclusively (Run 1). Then, for Runs 2
and 3, the binary variables were branched on first, followed by the continuous
variables. Finally, the “almost-integer” strategy described in Section 4.5.2
was used for Runs 4, 5 and 6. A binary variable was declared to have a low
degree of fractionality if its value z* at the solution of the relaxed MINLP
was such that min{z*,1— 2*} < zdist. For Run 4, zdist = 0.1 was used and
for Runs 5 and 6, zdist = 0.2 was used.

A number of variable bound update strategies were also tested for this
problem. In Runs 1 and 2, updates were performed only for the continuous
variables. In all other runs, the bounds on the binary variables were also
updated. In Run 6, the effect of updating the bounds on only a fraction of
the continuous variables was studied.

The results are shown in Figure 9 and Table 5. Branching on the con-
tinuous variables only results in slow asymptotic convergence of algorithm
to the global optimum solution (Run 1). The rate of convergence is greatly
improved when the binary variables can be used for branching (Runs 2 to 6).
Although the “almost-integer” branching strategy exhibits the best perfor-
mance in terms of iterations (Runs 4 to 6), the lowest CPU requirements
correspond to Run 3, which branches on all the binary variables before turn-
ing to the continuous variables. The average time spent on each iteration
of the algorithm is therefore greater when the “almost-integer” strategy is
applied. Two factors can account for this increase in the computational
requirements. First, the selection of a binary branching variable requires
the solution of a nonconvex MINLP. In addition, the generation of a lower
bound on the solution at almost every node of the branch-and-bound tree
for Runs 4 to 6 necessitates the solution of a convex MINLP. By comparison,
only 58% of the nodes in the branch-and-bound tree for Run 3 involve the
solution of a convex MINLP. Lower bounds at the remaining nodes are ob-
tained by solving less expensive convex NLPs. Addressing the combinatorial
aspects of the problem first by branching on the binary variables thus leads
to the better performance of the SMIN-aBB algorithm.
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Figure 9: Progress of the lower bound for the heat exchanger network

Table 5: Global optimization of heat exchanger network — Note that Run 1
converges asymptotically.

Run | Iterations | CPU sec | Deepest | Binary
level branches
1 800 2210 60 —
2 753 1116 26 343
3 604 755 23 173
4 451 1041 18 97
5 422 935 26 112
6 547 945 22 127
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6.2.2 Specialized Algorithm for Heat Exchanger Network Prob-
lems

A global optimization algorithm specifically designed for this type of prob-
lem was proposed in [ZG97]. The basic framework of this approach is a
branch-and-bound algorithm where the branching variables are the stream
temperatures. Special convex underestimators have been devised for the
cost function, provided there is no stream splitting. Upper bounds on the
problem are obtained by fixing the binary variables and solving a noncon-
vex NLP locally or globally. The branch-and-bound search is preceded by
a heuristic local MINLP optimization step which allows the identification
of a good starting point. No computational results using this approach are
known for the example presented here.

7 Conclusions

As was demonstrated in this paper, mathematical programming techniques
are a valuable tool for the solution of process network applications. The
optimization approach to process synthesis illustrates their use for an im-
portant industrial application. It was shown that this procedure generates
Mixed-Integer Nonlinear Programming problems (MINLPs) and a number
of algorithms capable of addressing such problems were presented, including
decomposition-based methods, branch-and-bound and cutting plane tech-
niques. Considerable progress has been made in handling both the combi-
natorial aspects of the problem as well as nonconvexity issues so that the
global solution of increasingly complex problems can be identified. The de-
velopment of the SMIN-aBB and GMIN-aBB algorithms has extended the
class of problems that can rigorously be solved to global optimality.

The increasing capability of MINLP algorithms has permitted the de-
velopment of automated frameworks such as MINOPT, in which general
mathematical representations can be addressed. These developments have
led researchers in numerous fields to employ mathematical modeling and nu-
merical solution through MINLP optimization techniques in order to address
their problems.

A number of issues must be resolved in order to develop algorithms that
can handle more complex and realistic problems. Although computational
power has increased, the ability for MINLP algorithms to solve large scale
problems is still limited: a large number of integer variables leads to com-
binatorial problems, and a large number of continuous variables leads to
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the generation of large scale NLPs. In addition, rigorous models capable of
accurately describing industrial operations usually involve complex mathe-
matical expressions and result in problems which are difficult to solve using
standard procedures. Finally, approaches to address important challenges
such as the inclusion of dynamic models and optimal control problems into
the MINLP framework are emerging [SF97a].
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