Global Optimization of Mixed-Integer Nonlinear
Problems
C. S. Adjiman!, I. P. Androulakis® and C. A. Floudas?®
Department of Chemical Engineering,

Princeton University,
Princeton, NJ 08544

Abstract

Two novel deterministic global optimization algorithms for nonconvex mixed-integer
problems (MINLPs) are proposed, using the advances of the aBB algorithm for noncon-
vex NLPs Adjiman et al. (1998a). The Special Structure Mixed-Integer BB algorithm
(SMIN-aBB addresses problems with nonconvexities in the continuous variables and
linear and mixed-bilinear participation of the binary variables. The General Structure
Mixed-Integer aBB algorithm (GMIN-aBB), is applicable to a very general class of
problems for which the continuous relaxation is twice continuously differentiable. Both
algorithms are developed using the concepts of branch-and-bound, but they differ in
their approach to each of the required steps. The SMIN-aBB algorithm is based on the
convex underestimation of the continuous functions while the GMIN-aBB algorithm is
centered around the convex relaxation of the entire problem. Both algorithms rely on
optimization or interval based variable bound updates to enhance efficiency. A series of
medium-size engineering applications demonstrates the performance of the algorithms.
Finally, a comparison of the two algorithms on the same problems highlights the value

of algorithms which can handle binary or integer variables without reformulation.

1 Introduction

The decision-making processes that take place during the design of new products or chemical
plants can be made more rational and efficient thanks to the use of mathematical models
within a global optimization framework. For instance, approaches based on nonlinear pro-
gramming (NLP), such as those described in Horst and Tuy (1996), have been used to deter-
mine optimum equipment sizes and operating conditions for a given process (Floudas, 1995;

Grossmann, 1996). The economic benefits to be derived from identifying the global solution

LCurrent address: Centre for Process Systems Engineering, Imperial College of Science, Technology and
Medicine, Prince Consort Road, London SW7 2BY, United Kingdom
2Current address: Corporate Strategic Research, ExxonMobil Research and Engineering Co., Annandale,

NJ 08801-0998
3 Author to whom all correspondence should be addressed

of the many nonconvex problems that arise in chemical engineering has been amply illus-
trated (Grossmann, 1996). The most significant contribution of mathematical approaches,
however, comes from their ability to incorporate many alternative structures within a single
problem. This is achieved through the introduction of integer variables which leads to the
formulation of a mixed-integer nonlinear problem (MINLP) (Floudas, 1995; Floudas and
Grossmann, 1995; Grossmann, 1996). Such an approach has already been used for a wide
array of applications including process synthesis.

The solution of many MINLPs relevant to chemical engineering is made challenging not
only by the presence of integer variables but also by the nonconvexities in the models. As a
result, the potential contributions of mixed-integer nonlinear optimization to general design
problems have not yet been fully realized. The deterministic approaches proposed to date
for the solution of such problems can be expressed within the branch-and-bound framework,
a general approach which has had a significant impact on the chemical engineering com-
munity since its introduction in the literature by Lee et al. (1970) and Westerberg and
Stephanopoulos (1975). While such techniques have long been used to solve convex mixed-
integer problems (see, for instance, Beale, 1977; Ostrovsky et al., 1990), and certain types of
nonconvex NLPs (Falk and Soland, 1969; McCormick, 1976), they have only recently started
to be applied to the global optimization of nonconvex MINLPs. This introduction provides
an overview of work in this specific area, and the reader is referred to Horst and Tuy (1996)
for a general description of global optimization techniques.

The branch-and-reduce algorithm of Ryoo and Sahinidis (1995), relies on existing un-
derestimation techniques such as those proposed by McCormick (1976) and focuses on the
reduction of the size of the solution domain through the addition of feasibility and opti-
mality tests. The interval analysis algorithm of Vaidyanathan and El-Halwagi (1996) can
be presented as a branch-and-bound approach in which the function values are bounded
using interval arithmetic, the domain size is reduced through partitioning, and fathoming
is performed by applying upper bound, infeasibility, monotonicity, nonconvexity and lower
bound tests, as well as the distrust-region method. The reformulation/spatial branch-and-
bound algorithm of Smith and Pantelides (1997, 1999) is designed to address functions that
involve binary arithmetic operators and concave or convex operators such as logarithms and
exponentials. Finally, the Extended Cutting Plane algorithm of Westerlund et al. (1998),
an alternative to branch-and-bound techniques, tackles problems involving pseudo-convex
functions and is an extension of the ECP algorithm for convex MINLPs (Westerlund and
Pettersson, 1995). A review of these algorithms is presented in Adjiman et al. (1999). More

specialized algorithms have also been proposed for certain classes of applications, as in the

work of Zamora and Grossmann (1998a) on heat exchanger networks.

Two new broadly applicable global optimization approaches are presented in this paper.
They were briefly introduced in Adjiman et al. (1997), and this paper provides a com-
plete description of the theoretical basis of the algorithms, and computational experiments
which enable the determination of the most adequate implementation decisions. First, the
Special Structure Mixed-Integer aBB algorithm (SMIN-aBB), designed for problems with
general nonconvexities in the continuous variables and restricted participation of the bi-
nary variables, is discussed. It is based on the aBB global optimization algorithm for twice
continuously differentiable NLPs (Androulakis et al., 1995; Adjiman and Floudas, 1996;
Adjiman et al., 1998a). The performance of the algorithm is studied on a number of small
literature problems and some medium-size heat exchanger network problems. Particular
attention is paid to the selection of options for variable branching and bound updates that
allow the fast convergence of the algorithm. In order to address the broader class of prob-
lems whose continuous relaxation is twice continuously differentiable, the General Structure
Mixed-Integer aBB algorithm (GMIN-aBB) is then introduced. While based on a classical
branch-and-bound approach for mixed-integer problems (Gupta and Ravindran, 1985), it
circumvents the problems such algorithms encounter when dealing with nonconvex problems
through efficient and rigorous strategies for bounding, branching and variable bound tight-
ening. The algorithm is tested on the series of small literature problems, a pump network
synthesis problem and four trim loss minimization problems. Finally, the applicability of the

two algorithms is discussed in light of their differences.

2 Foundations of the SMIN-aBB algorithm

The SMIN-aBB algorithm is guaranteed to converge in a finite number of iterations to the
global solution of MINLPs involving functions that can be separated into a twice continuously
differentiable part, a mixed bilinear part and linear binary part. Thus, the assumption of
convexity required for commonly used MINLP algorithms such as the OA/ER (Duran and
Grossmann, 1986; Kocis and Grossmann, 1987) and the GBD (Geoffrion, 1972) is lifted.

Mathematically, the class of MINLPs for which the SMIN-aBB algorithm is designed is
given by:

min fx)+x"Ary +cly

Ty
st. gi(®)+a" Ay +cly<0,i=1,...,m 1)
hi(x) + " Apsy +chy= 0,i=1,...,p
T c [wLawU]a yE {0, l}q
where f(x), gi(x), i=1,...,m,and hy(x),i =1,... ,p are twice continuously differentiable

functions, m is the number of inequality constraints, p is the number of equality constraints,
g is the dimension of the binary variable vector, A¢, A;; and A, ; are matrices of size n X g,
and cy, cg; and cp,; are vectors of size g.

This form is highly versatile. In process synthesis, for instance, the binary variables
represent the existence of certain units and participate linearly in “big-M” constraints, or
in mixed-bilinear terms. If the model used involves different regimes which are described
through discontinuous functions, the discontinuities can be removed by introducing binary
variables which activate the appropriate model equations depending on the region of space
being explored (Floudas, 1995).

2.1 Generation of valid upper and lower bounds

The global optimality of the solution found through a branch-and-bound algorithm can be
guaranteed only if the bounding step generates valid upper and lower bounds on the mixed-

integer nonconvex problem.

2.1.1 Upper bound

A rigorous upper bound is obtained by solving the nonconvex MINLP (1) locally. The
generalized Benders decomposition (GBD) (Benders, 1962; Geoffrion, 1972; Floudas et al.,
1989) may be used to obtain such a solution. When there are no mixed-bilinear terms,
the outer-approximation with equality relaxation (OA/ER) (Duran and Grossmann, 1986;
Kocis and Grossmann, 1987) or a local MINLP branch-and-bound algorithm (B&B) (Beale,
1977; Gupta and Ravindran, 1985; Ostrovsky et al., 1990; Borchers and Mitchell, 1991;

Quesada and Grossmann, 1992) may also be used.

2.1.2 Lower bound

In order to obtain a valid lower bound, a relaxed problem which can be solved to global

optimality must be constructed from problem (1). The subclass of (1) in which the continuous

functions f(x), ¢g;(x) and h;(x) are convex can be solved to global optimality using the GBD
algorithm, and, when there are no mixed-bilinear terms, the OA/ER or B&B algorithms. A
problem that meets these conditions and whose solution is a lower bound on problem (1)
is derived by constructing convex underestimators for the nonconvex functions f(x), g;(x)
and h;(x). The rigorous convexification/relaxation strategy used in the aBB algorithm
for nonconvex continuous problems (Adjiman and Floudas, 1996; Adjiman et al., 1998a)
allows the construction of the desired lower bounding MINLP. This scheme is based on a
decomposition of the functions into a sum of terms with special mathematical structure, such
as linear, convex, bilinear, trilinear, fractional, fractional trilinear, univariate concave and
general nonconvex terms. A different convex relaxation technique is then applied for each
class of term. The linear and convex terms are unchanged. The bilinear, trilinear, fractional,
fractional trilinear are replaced by a new variable on which a set of convex constraints is
imposed. These and any other terms that require the introduction of a new variable in the
convex lower bounding problem are referred to as substituted terms. The univariate concave

terms are linearized. Finally, a convex underestimator for a nonconvex term Fyc(x) is given

by
Fyc(z) — Z iz — 7)) (2] — m3), (2)

where the «;’s are positive scalars such that Hp, . (x) + 2diag(e;) is positive semi-definite
for all ¢ € [2%, V], where Hp, () is the Hessian matrix of the general nonconvex term.
Appropriate «;’s can then be derived using one of the techniques presented in Adjiman and
Floudas (1996) and Adjiman et al. (1998a). The reader is also referred to these publications
for a description of the treatment of equality constraints. Thus, for MINLPs of type (1), the
nonconvexities arising from the continuous terms are handled in the same manner as in the
aBB algorithm, but the generation of a valid lower bound requires the solution of a convex
MINLP rather than a convex NLP. In addition, the decomposition approach of the GBD is
needed to tackle nonconvexities arising from mixed bilinear terms.

A general formulation for the lower bounding problem is given by

a:ngljnzlu flz,w) + xT Ay +cly
Gi(z,w)+ T A,y + cg,iy <0,i=1,...,m
Ei(w,w) +xlApy + cfﬂ-y = 0,1€ P (3)
hi(x, w) + 7 Apy + ciy=0,i€Py

(

i

>

(e, w) — " Apy —chy= 0, 1€ Py

Clz,w)

zez" 2], ye{y",y"}, wew" w’]
where the “superscript denotes the convex underestimator of the specified function valid for
the current domain [z”, £V]; w denotes the set of variables that replace the substituted terms;
and C(x,w) denotes the set of additional constraints that arise from the underestimation of
these terms. Finally P, denotes the set of equality constraints which involve only linear and
substituted terms, and Py denotes all the other equalities.

An important feature of the lower bounding scheme is that the quality of the lower bounds
improves with increasing variable ranges. This ensures e-convergence of the algorithm and

can be used to improve the convergence rate as discussed in subsequent sections.

2.2 Selection of branching variable

A list of lower bounds for the regions that have not yet been partitioned is maintained. The
region with the lowest lower bound is selected for further exploration at each iteration.
The choice continuous or binary variable to be branched on at the chosen node can
affect the performance of the algorithm significantly. If a continuous variable is judiciously
chosen, the partition results in an improvement of the lower bound on the problem through
a tightening of the convex underestimators for the nonconvex continuous functions. Binary
variables also have an indirect effect on the quality of the convex underestimators as they
influence the range of values that the continuous variables can take on. In addition, fixing a
binary variable through branching reduces the complexity of the convex MINLP that must
be solved to generate a lower bound. In this section, a new result is presented for continuous
variable branching, and alternative strategies are introduced to exploit the structure of the

problem.

2.2.1 Continuous variable branching

This first branching variable selection scheme exploits the direct relationship between the
range of the continuous variables and the quality of the lower bounds by partitioning only
on these variables. One of the rules available for the aBB algorithm can be used for the
selection, such as the least-reduced axis, the term measure or the variable measure. The
details of these strategies can be found in Adjiman et al. (1998b), where computational
experience showed the term and variable measures to result in improved performance for

different types of problems.

Given the proven effectiveness of the term measure as a branching criterion, we present a
new expression to rigorously compute the maximum separation distance between a fractional
term x;/x9 and its convex envelope. This distance depends on the signs of the variable

bounds.

Property 2.1 For zL > 0, , the mazimum separation distance is given by

L U
Ty +T{ 1 1 L
e+) for 20,
dpoy = 4 Thof | abal®olel?® | 2(sf-200)Veh | 2af U 4
mar — LU LU U + T U + 70U fO?".Tl <0, ()
Ty %3 T3 T3 (m2 —m2) (z2 T3) A% zf \/5”2 Ty
max{d;, ds} for i <0, z¥ > 0.
where
L,.L
1)
ol if 331 Ry
otherwise.
U
and, given A = 5dztzlzlzy (+ a4+ 2laUql :CQ)
2 2 1
(543 ¢ Qwi]xz wgfﬁ 14583 x7 wlU:cg
-
(zg—zz)(A?i 543m1z§]z2ng) (wg—wz)(“ 543$1$§]$2ng)
2
A3 —543 1y w?x%zgj 2z¥ 2l —a¥zl+alal —alal
dy = < 543 (2§ —2k)] LA% («¥— z%)zQL ’
A3 543w zV Lzl
if et + 2EaValal >0, and TR € [y, 2],
54357 A3
[0, otherwise

Proof The proof of this property is presented in Appendix A.

2.2.2 Sequential branching: Binary-continuous

This second approach aims to tackle the combinatorial aspects of the problem and its non-
convexity sequentially. In the first levels of the branch-and-bound tree, branching takes place
on the binary variables only. This policy is followed until all binary variables have been fixed.
Thus, binary variable branching can go on for at most ¢ levels of the branch-and-bound tree,
where ¢ is the number of binary variables. In instances where variable bound updates allow
to discard some of the values of the binary variables, fewer levels are needed to fix all binary
variables. The nonconvexities are dealt with on subsequent levels of the tree, by branching
on the continuous variables, following the branching rules described in Section 2.2.1.

The choice of a specific binary variable for branching is based on random selection or/and

on a priority ranking of the variables. The highest ranking binary variables are those that

7

influence the bounds on the greatest number of variables. In general, variables that play a
similar role in determining the structure of the problem are assigned the same priority and
the branching variable is chosen randomly from the highest ranking group.

An important aspect of sequential branching from the computational standpoint is that,
once all the binary variables have been fixed, the problems that must be solved to obtain
upper and lower bounds on the solution are continuous nonconvex and convex problems.
The bounding of the nodes during the continuous variable branching phase is therefore less

computationally intensive than during the binary branching phase.

2.2.3 Hybrid branching

This third approach also involves branching on the continuous and binary variables although
the type of variable selected is no longer determined from the level in the tree. To increase
the impact of binary variable branching on the quality of the lower bound, such a variable is
selected when a continuous relaxation of the problem indicates that the two newly created
children nodes may have significantly different lower bounds. Thus, if one of the binary
variables is close to 0 or 1 at a local solution of the continuous relaxation, it is branched
on. The degree of closeness is an arbitrary parameter which is typically set to 0.1 or 0.2. If
no “almost-integer” binary variable is found, a continuous variable is selected for branching

using one of the rules described in Section 2.2.1.

2.3 Variable bound updates

The tightening of variable bounds can have a significant impact on the quality of the un-
derestimators and lead to a reduction in iteration number. Hamed and McCormick (1993)
highlight the reliance of many global optimization algorithms on variable bounds and propose
an approach to determine suitable bounds from constraints. The positive effects of reduc-
tions in the range of continuous variables has been amply demonstrated in the literature on
the global optimization of NLPs. Hansen et al. (1991) combine lower bounding functions to
recursively reduce variable ranges. Visweswaran and Floudas (1993) exploit the structure of
the problem to update variable bounds and use an optimization approach at each iteration to
further improve the performance of the GOP algorithm (Visweswaran and Floudas, 1996a,b).
Ryoo and Sahinidis (1995, 1996) and Shectman and Sahinidis (1998) use linear parametric
analysis, the Lagrange multipliers of active inequality and bound constraints, and the La-
grange multipliers obtained after the solution of modified convex relaxations in the case of

inactive constraints. Zamora and Grossmann (1998b) have also proposed “contraction steps”

based on the Lagrange multiplier, together with a technique to select variables for bound
tightening. Smith and Pantelides (1996) resort to a multiple-pass tightening procedure based
on their reformulation strategy and feasibility tests, and also resort to an optimization-based
strategy (Smith and Pantelides, 1999). Maranas and Floudas (1997), Zamora and Gross-
mann (1998a) and Adjiman et al. (1998b) rely on the solution of convex relaxations of the
original problem with a modified objective function.

The very effective optimization-based variable bound updates come at a computational
cost, so that they can sometimes result in a decrease in the number of iterations to conver-
gence but an increase in CPU time (Adjiman et al., 1998b). Since this cost is expected to
rise in the context of nonconvex MINLPs, the determination of the optimal strategy becomes
more critical: should they be performed at every iteration or with a lesser frequency? Should
all variables be treated? Although the best approach is likely to be problem dependent, only
a subset of the variable bounds should in general be tightened at any given node. For the
continuous variables, this subset consists of a few variables with a high variable measure as
defined in Section 2.2.1. In addition, we advocate bound updates for the binary variables
because they are beneficial in two ways: they indirectly lead to the construction of tighter
underestimators and they allow a binary variable to be fixed and therefore decrease the num-
ber of combinations that potentially need to be explored. The branching priorities defined
in Section 2.2.2 may also be used as bound update priorities.

Two specific methods to tighten the variable bounds have been implemented in the SMIN-
aBB algorithm for the continuous and binary variables. The first is an optimization-based
approach in which a convex MINLP is formulated and solved for each bound to be updated.
The second is an iterative approach based on interval arithmetic. This latter method can be

modified to enable the tightening of binary variable bounds.

2.3.1 Optimization-based approach

In the SMIN-aBB algorithm, a new lower (upper) bound on variable x; can be obtained
by solving a convex MINLP where the objective is to minimize z; (—z;) subject to the
convexified constraints from the original problem. In addition, a so-called “objective function

cut” can be added to the problem (Zamora and Grossmann, 1998a) as a constraint:
fle,w)+ 2" Ay + iy < 7, (5)

where the ” superscript denotes the convex underestimator of the specified function valid
for the current domain [”, 2U], f denotes the best upper on the global optimum and w

denotes the variables that replace the substituted terms. Although this objective function

cut is optional, it may help further reduce the variable ranges.

In order to get even tighter bounds, the latest improved bound replaces the old bound
in the bound constraint & € [x”, V] before the next bound update is performed. To fully
reflect the reduction in range, the underestimators which depend on the improved bound
should also be updated. However, this last step can sometimes double the computational
cost of each variable bound update (Adjiman et al., 1998b) and should be applied with
caution.

The SMIN-aBB algorithm is also set-up to carry out optimization-based bound updates
on the binary variables by minimizing y; or —y;. The effect of such a procedure on algo-
rithmic performance has not been previously studied and will therefore be examined in the

computational section.

2.3.2 Interval-based approach

Interval arithmetic (Moore, 1979; Neumaier, 1990) can be used to update the binary and con-
tinuous variable bounds. This approach is based on the interval evaluation of the constraints
in the nonconvex MINLP as well as Eq. (5), the objective function cut. The binary variables
that have not yet been fixed are treated as continuous variables. The interval evaluation gives
enclosures for the values of all constraints in the relaxed space (z,y) € [zL, zV] x [y%, yY].
The range [F'L, FU] is an enclosure for a function F(z,y) if F(z,y) € [FX, FY] for all
(z,y) € [zL, 2Y] x [yF,yY]. Given [FL, FU], the feasibility of the constraint can be as-
sessed. A necessary feasibility condition for the inequality constraint F'(z,y) < 0 is that
FI < 0. Similarly, a necessary feasibility condition for the equality constraint F(z,y) = 0
is 0 € [F©, FY]. If the interval evaluation of a single constraint does not satisfy the appro-
priate necessary condition, the current region is infeasible. A bisection procedure is used to
improve the variable bounds: for a lower (upper) bound, the aim is to identify an infeasible
region on the lower (upper) end of the variable range. Initially, half the variable range is
considered. The interval feasibility of the left (right) half is tested. If this region is infeasible,
it is discarded and the right (left) half is then tested. Otherwise, the region is further split
in two and the leftmost (rightmost) range is once again tested. This procedure is repeated
until the original range has been determined to be entirely infeasible or until the range being
tested is smaller than a user-specified tolerance. This approach is illustrated in Figure 1 for
the lower bound of a variable originally in the range [0, 4], with a tolerance of 1. A general
description of the iterative approach used to update the lower (upper) bound on a continuous
variable z; is given in Table 1 in pseudo-code format.

For a binary variable, the interval-based procedure for continuous variables can be easily

10

modified to account for the nature of the variable. In this case, no iterations are needed:
to update both bounds on binary variable y;, the interval feasibility of y; = 0 and y; = 1
is tested. If both tests reveal infeasibility, the entire region is discarded; if one test only
is feasible, y; is fixed to the bound corresponding to the feasible test; and if both tests are
feasible, the bounds on y; remain unchanged.

The interval-based bound updates are less computationally intensive than the optimization-
based strategy, but use generally looser relaxations and are therefore less effective at reducing
variable ranges. Thus, at early levels of the branch-and-bound tree, when variable bound
updates are most critical, the overestimation of the interval computations is most significant.

As a result, the optimization-based approach leads to tighter bounds.

2.4 Algorithmic procedure
2.4.1 Flowchart

In the SMIN-aBB algorithm, the upper and lower bounding procedures, and the branching
and variable bound update strategies are embedded within a branch-and-bound algorithm.

The flowchart shown in Figure 2 highlights the main features of the algorithm.

2.4.2 Illustrative example

In order to illustrate the algorithmic procedure, a small example proposed by Kocis and
Grossmann (1989) is used. It is a simple design problem where one of two reactors must
be chosen to produce a given product at the lowest possible cost. It involves two binary
variables, one for each reactor, and seven continuous variables. In the following formulation,

the constraint z; + 2z, = 10 has been used to tighten the bounds on z; and z,:

min 7.5y, + 5.5ys + Tv; + 6vy + Sz
st. 21—09(1—e ")z =0
29— 0.8 (1 — e 0%%2) 3y =0

1 +axo—2=0

21+ 20 =10
vy — 10y <0
v9 — 10y <0
x1—12y; <0
o — 12y, <0
y1+y2 =1

11

0<z1,22 <20;0 < 21,2, <10
0<v,1b<10;0< <20
(ylayZ) € {071}2

Because of the linear participation of the binary variables, the SMIN-aBB algorithm is
well-suited to solve this nonconvex MINLP. It identifies the global solution of 99.2 within a
relative tolerance of 10~2 after eight iterations and under 2 CPU seconds on an HP-C160,
when bound updates are performed at every iteration and branching takes place on the
binary variables first. The selection of a branching variable selection is random for the
binary variables and based on the term measures for the continuous variables. At the global
solution, the binary variable values are y; = 1 and y, = 0. The steps of the algorithm are
shown in the branch-and-bound tree of Figure 3. Smith and Pantelides (1999) solve this
problem to a relative tolerance of 1072 in 19 nodes and under 2 CPU seconds on a SUN
SPARCstation 5.

At the first node, the initial lower bound is 11.4 and an upper bound of 99.2 is found.
The binary variable y; is selected as a branching variable. The region y; = 0 is infeasible
and can therefore be fathomed (black node), while an improved lower bound is found for
y1 = 1. This latter region is therefore chosen for exploration at the second iteration. Variable
bound updates reveal that y, = 1 is infeasible so that y, can be fixed to zero. Branching
on the continuous variables may now begin. The first selected variable is z; and regions
0 <2x; <10 and 10 < z; < 20 are created. Since the left region has the lowest lower bound
(36.3), it is examined at iteration 3 by branching on z;. Both children nodes are found to be
infeasible. The algorithm proceeds to node 4 for which v is selected as a branching variable.
The right region, 5.6 < v; < 10, is fathomed since it has a lower bound greater than 99.2.
The algorithm progresses along the branch-and-bound tree until, at iteration 8, only one
node is left open with a lower bound of 99.2. This is within the specified relative tolerance,

so the procedure is terminated.

3 Computational studies for the SMIN-aBB algorithm

A complete implementation of the algorithm has been developed, with links to the Outer
Approximation and the Generalized Benders Decomposition algorithms that are provided
as part of the MINOPT package (Schweiger et al., 1997). This section is dedicated to the
investigation of the performance of the proposed SMIN-aBB algorithm on a series of small
test examples from the literature and three heat exchanger network synthesis problems.

These latter examples are used to study the effect of branching and bound update strategies

12

on the SMIN-aBB algorithm. All runs are performed on an HP-C160 with a relative tolerance
of 1073.

3.1 Small examples

The examples used here have all appeared in the literature as test examples (Kocis and
Grossmann, 1988; Floudas et al., 1989; Ryoo and Sahinidis, 1995; Cardoso et al., 1997). The

results are summarized in Table 2.

Example 3.1.1 This example, which was first proposed by Kocis and Grossmann (1988),

involves three binary variables and two continuous variables. The formulation is given by

I%llél 2.@1 + 3372 + 153/1 + 2y2 — 05y3

s.t. 22 +y =125
21 4+ 1.5y, = 3
x1+y1 < 1.6
1.33325 + 1y < 3
Y1 —Y2+ys <0
x1,Z2,23 2 0
(41, y2,y3) € {0,1}°.

The value of the objective function at the global solution is 7.67 and the optimum solution
vectors are * = (1.12,1.31)7 and y* = (0,1,1)T. The results shown in Table 2 are achieved
using sequential branching, optimization-based bound updates for the continuous variables
and interval-based bound updates for the binary variables. The branch-and-reduce algorithm

of Ryoo and Sahinidis (1995) identifies the solution at the root node.

Example 3.1.2 This example is example 6.6.5 from Floudas (1995). The formulation in-

volves two continuous variables and only one binary variable.

min —0.7y + 5(x; — 0.5)> + 0.8
zy

’

s.t. —e(10.2) _ 4.0 <)
o+ 1.1y <1
1 — 1.2y <0.2
02<z; <1
—2.22564 < 19 < —1

y € {0,1}

13

The global solution has an objective value of 1.07654 and the corresponding solution vectors

are * = (0.94194, —2.1)" and y* = 1. The same strategy as in Example 3.1.1 is used.

Example 3.1.3 This example was proposed by Yuan et al. (1988). It involves three con-

tinuous variables and four binary variables. The formulation is

)

min (v — 1)+ (12— 27 + (55 — 1)~ In(ys + 1)

+(z1 —1)2 + (29 — 2)* + (23 — 3)?
s.t. Y1+Y2+ys+x1+x20+23<5H
vi+ai+ai+a2<55
1+ < 1.2
Yo + 10 < 1.8
Y3 +x3 < 2.5
Ys+21 < 1.2
Y2 + 22 < 1.64
Y2 + 23 < 4.25
ys + 23 < 4.64
T1,T9,x3 > 0
y € {0,1}".

Since the binary variables participate nonlinearly in this problem, it must be reformulated
to be solved by the SMIN-aBB algorithm. The new formulation involves seven continuous
variables and four binary variables as well as four new linear equality constraints. This larger
problem is a conver MINLP which can be solved using the OA/ER. The global solution has
an objective value of 4.5796 and solution vectors £* = (0.2,0.8,1.908)" and y* = (1,1,0,1)7.
As expected, the SMIN-aBB algorithm converges in only one iteration. The branch-and-

reduce algorithm of Ryoo and Sahinidis (1995) explores between three and seven nodes.

Example 3.1.4 This example was first presented by Berman and Ashrafi (1993). It involves
three continuous variables and eight binary variables that participate in a highly nonlinear

manner.

14

min —T1T2T3
Yy

s.t. x1 + 0.1¥10.2¥20.15% = 1
Zg + 0.05%40.2¥50.15% =1

x3 + 0.02¥70.06%¢ =1

Y — Y —ys < —1

—Ys—Ys — Yo < —1

—yr—ys < —1
3y1 + Y2 + 2ys + 3ya + 2y5 + ys + 3yr + 2ys < 10
0<x,29,23 <1
y €{0,1}%.

The global optimum solution has an objective function value of -0.94347 and solution vectors
z* = (0.97,0.9925,0.98)T and y* = (0,1,1,1,0,1,1,0)T. For the SMIN-aBB algorithm to
solve this problem, it must be reformulated through a logarithmic transformation. For

instance, the first constraint is equivalent to the linear constraint
In(l1 —z1) —y1 In(0.1) — y2 In(0.2) — y3 In(0.15) = 0.

Example 3.1.5 This example is a purely integer nonconvex problem presented in Porn et

al. (1997). It involves two variables.

H,}Jin Ty1 + 10y

st yiPyy T — Tyr — 9yp < 24

—y1 — 2y <5
—3y1 +y2 <1
dy1 — 3y < 11

Y1, Y2 € [1,5]0N

The global optimum solution is 31, with (y1,y2) = (3,1)T. To be solved with the SMIN-aBB
algorithm, this problem must be reformulated by expressing each integer variable y; in terms

of binary variables and new constraints:
Yi =1+ zin + 220 + 423, 2o +23 <1, 20 +22 <1; 241, 20,23 € {0,1}.

The y; variables can then be treated as continuous variables and the nonconvex inequality
can be underestimated using the o parameters. Porn et al. (1997) solved this problem after

re-formulating it as a convex MINLP.

15

Example 3.1.6 This example taken from Porn et al. (1997) involves one continuous and

one integer variable.

min 3y — 5z
T,y

st 2y? — 2995 — 220542 + 11y + 82 < 39
—y+z<3
2y + 3z < 24
1<z<10
y€[1,6)]NN

The optimal solution is —17, with 2* =4 and y* = 1.

3.2 Heat exchanger network synthesis

The performance of the SMIN-aBB algorithm is studied on three heat exchanger network
synthesis problems, using the Chen approximation of the logarithmic mean temperature
difference or the arithmetic mean temperature difference in order to compute the area. These

larger problems are used to explore the effects of the options previously discussed.

3.2.1 Chen approximation

The design of a heat exchanger network involving two hot streams, two cold streams, one
hot and one cold utility is first chosen. The formulation of Yee and Grossmann (1991) is
used. The superstructure for this problem is shown in Figure 4. There are 12 possible
matches and therefore 12 binary variables. The annualized cost of the network is expressed
as the summation of the utility costs, the fixed charges for the required heat-exchangers
and an area-based cost for each heat-exchanger. Since the Chen approximation for the
logarithmic mean of the temperature difference is used (Chen, 1987), the area is a highly
nonlinear function of the heat duty and the temperature differences at both ends of the heat
exchanger. The binary variables, which represent the existence of a given heat-exchanger,
participate linearly in the problem. All the constraints are linear.

Given the set ST" of temperature locations, the number of stages NS, the set HP of hot

process streams and the set C'P of cold process streams, the general problem formulation is

16

as follows.

min Y CeyQcui+ Y. CuuQuuy

i€HP jecp
+ > > > CFyz+ Y, CFicvzevi+ Y, CFjnvuzau,;
i€HP jECP keST iCHP jecp

+ Z Z Z Cij Qijk 1
i€EHP jECP keST Uij [ATijkATijk+1 (ATijk+ATijk+l)/2] 3
CAai7CUQCUi
+ Z ’ i
i€HP Ucu,i[ATou,i(Touti—Tin.cv) (ATcv,i+ Tout,i—Tin,cv) /2] ®
+ Z CA,j,HUQgu,;

jeCP Ugu,j [ATHU,j (Tin,HU*Tout,j) (ATHU,j+Tin,HU*Tout,j)/Q] 5

st (Ting — Towi) Fepi= Y, Y. Quijk + Qcuvi, Vi€ HP

kEST jeCP
(Toutj — Ting) Fepj = > > Qijk +Quu,, Vje€CP
KESTiCHP
(T — Tigrr) Fepi = Y2 Qujr, Vk € ST, Vie HP
jecp
(Tj?'k _Tji,k-f-l) Fij = Z Qijka Vk e ST, V] € CcP
iCHP

Tin; =Tin, Vi€ HP
Tinj =Tjns+1, Vj€ECP
Tig > Tigy1, Ve ST, Vie HP
Tip > Typsr, Ve ST, ¥jeCOP
Touti < Tinsy1, Vi€ HP
Toutj = Tj1, VjECP
(Ti,ns+1 = Touts) Fepi = Qevyi, Vi€ HP
(Toutj — Tj1) Fepj = Quuyy, VjeCP
Qijk — 21, <0, VEe ST, Vie HP, Vj € CP
Qcvi — Qzcy; <0, Vie HP
Quvj — Q2py; <0, VjeCP
Top — Ty + D(L = z35) > ATye, Vk € ST, Vie HP,Vj € CP
Tiprr — Tipsr + T(1 — 2ijs) > ATyes, Vk € ST, Vie HP,Vje CP
Tins+1 — Tour,cv + T'(1 = zcu,) > ATeys, Vie HP
Towt,gv — T +T(1 = zgu,;) > ATyy,;, VjeCP
ATy > 10, Yke ST,Vie HP,Vj € CP
Zijk, 2cU, 2uvj € 10,1}, Vke ST, Vie HP, Vj € CP

The continuous variables are Tj;, the temperature of hot stream ¢ at the hot end of stage
k; Ty, the temperature of cold stream j at the cold end of stage k, @z, the heat ex-

changed between hot stream ¢ and cold stream j at temperature location k; Qcu,i, the heat

17

exchanged between hot stream 4 and the cold utility at temperature location k; Q gy, the
heat exchanged between cold stream j and the hot utility at temperature location k; AT},
the temperature approach for the match of hot stream ¢ and cold stream j at temperature
location k; ATy, the temperature approach for the match of hot stream 7 and the cold
utility at temperature location k; ATy ;, the temperature approach for the match of cold
stream j and the hot utility at temperature location k. The binary variables are z;;j, for
the existence of a match between hot stream ¢ and cold stream j at temperature location k;
Zcu,, for the existence of a match between hot stream ¢ and the cold utility at temperature
location k; zmy;, for the existence of a match between cold stream j and the hot utility at
temperature location k.

The parameters are T;,, the inlet temperature of a stream; 7,,;, the outlet temperature;
Fcp, the heat capacity flowrate of a stream; €2, the upper bound on heat exchange; ', the
upper bound on the temperature difference. The stream data for the problem are summa-
rized in Table 3. There are two temperature intervals. The steam utility cost is Cyy =
$80/kW-yr and the cooling water cost is Coy = $15/kW-yr. The fixed charges CF for
the heat exchangers amount to $5500/yr, regardless of the type of heat exchanger (hot pro-
cess stream/cold utility, cold process stream/hot utility or hot process stream/cold process
stream). The cost coefficient for the area-dependent part of the heat exchanger costs is C' =
$300/yr. The overall heat transfer coefficients are U;; = 0.5 kW /m?K for the hot stream-cold
stream units, Ucy,; = 0.83333 kW /m?K for the cold stream-hot utility units and U au,j = 0.5
kW /m?K for the hot stream-cold utility units. The global optimum configuration involves
six heat exchangers and is shown in Figure 5. It corresponds to an annualized network cost
of $154,997.

Due to the linear participation of the binary variables, the problem can be solved to global
optimality using the SMIN-aBB algorithm. The area-dependent cost of the heat exchang-
ers must be underestimated using the general convex lower bounding functions discussed
in Section 2.1. The Outer Approximation algorithm is used to solve the underestimating
convex MINLP at each node of the tree. When this MINLP is feasible, an upper bound
on the objective function is obtained by solving the nonconvex MINLP locally in the same
region. The effects of the branching and variable bound update strategies on convergence
characteristics are studied for this example.

Among the continuous variables, the temperature variables, T;; and Tj, play a particular
role. Decreasing the range of one of these variables results in a decrease of the range of some
of the heat loads and stream temperature differences. To reflect this interdependence, the

branching variable is selected from the set of stream temperature variables exclusively, even

18

though they do not participate explicitly in the nonconvex terms. The z;;, binary variables
representing the existence of hot stream/cold stream heat exchangers affect a larger number
of variables than the zcy,; and zpy,; variables representing utility heat exchangers. They are
therefore assigned a higher branching priority. Finally, to maximize the effect of branching,
the bounds on the heat loads are expressed as a function of the bounds on the stream

temperatures and the binary variables:

0 < Qi < zjjp, min{Fep; (T — Tiya) , Fepy (Tjh — Tiipn) b
Vke ST,Vie HP, Vj € CP,
0< QCU,z’ < ZgU,i Fep; (T'[,]Ns+1 - Tout,z’) ; Vie HP,

0 < Quuy; < 24y, Fepj (Tour; —T)y) ,Vj € CP.

g1

(6)

Similarly, the bounds on the temperature differences can be expressed in terms of the

bounds on the branching variables.

10 < ATj5 <10 (1 - 25,) + 25, max {T}} —T},10} ,Vie HP, Vj e CP,
10 < ATy <10 (1 =25,) (1—25;)
+ (1= (U= 28ey) (1 28y)) max{Tf — T, 10},

Vie HP,Vj e CP,V1 <k < NS,

10 < ATjjns41 <10 (1= 28ys) + 20 ng max {T¥ ey — TEygyq, 10},
Vie HP,Vj € CP,

10 < ATey, <10 (1 = 28y;) + 28y, max {T% ¢y, — Toutcv, 10}, Vie HP,
10 < ATqy; <10 (1 — 2fy;) + 25y, max {Tow gv — T}4,10}, Vj € CP.

Several combinations of the branching and variable bound update strategies are tested.
Each run is labeled with a number and a letter. The number refers to the variable bound
update strategy, as shown in Table 4. In all instances, the only continuous variables selected
for bound updates are the temperatures. All other continuous variables are automatically
updated through Eqs.(6) and (7). The letter relates to the branching strategy as shown in
Table 5. In the case of hybrid branching, a binary variable z is defined as close to its bounds
if its value z* at the solution of the relaxed MINLP is such that min{z*,1 — z*} < zdist.

The results are presented in Table 6.

Branching strategies — Run series 1 Although the nonconvexities arise only from the
continuous variables, the SMIN-aBB algorithm does not converge after 1000 iterations when

the continuous variable branching strategy is used (Run la). At that point, the relative

19

difference between the upper and lower bound on the global solution is 2.5 % and the lower
bound increases at the slow rate of 2 1075% per iteration. Given this poor performance, this
first branching strategy is dropped from consideration. Branching on the binary variables
yields much better results. A total of 509 convex MINLPs and 798 convex NLPs are solved
when using sequential branching (Run 1b). As a result, the average time per iteration is
cut in half. The rate of lower bound improvement is also much faster and convergence is
achieved in only 655 iterations. Higher improvement rates are obtained when using the
hybrid strategy with zdist = 0.1 and zdist = 0.2. The deviation of the binary variables from
integrality at the solution of a continuous relaxation is therefore a good measure of their effect
on the quality of the lower bounding problem. However, in both hybrid branching runs, the
majority of lower bounding problems are convex MINLPs. In addition, the identification
of a good branching variable requires the local solution of a nonconvex NLP. Both these
factors combine to increase the CPU requirement per iteration to twice that of Run 1b.

Consequently, it appears that sequential branching is a better overall strategy.

Bound updates on the binary variables — Run series 2 & 3 In Run 2b, interval-
based bound tightening on binary variables results in all binary variables being fixed at some
of the nodes above level 12. Only 271 out of the 601 nodes explored in this initial part of the
tree are MINLPs. A total of 830 NLPs are solved. Not only does the number of iterations
decrease from Run 1b to Run 2b, but the CPU time per iteration is also cut by 50%, in spite
of the added processing required by interval bound updates. Similar trends are obtained for
the hybrid branching strategy of Runs 2c¢ and 2d.

In all cases for run series 3, the use of the optimization-based approach for all bound
updates leads to a decrease in the number of iterations but a slight increase in the CPU
requirements. The combination of optimization-based bound updates for the continuous
variables and interval-based bound updates for the binary variables therefore seems to pro-

vide sufficient tightening and it is adopted for the remaining runs.

The objective function cut — Run series 4 Due to the linearity of the constraints
in the original formulation, the bound update problem without the objective function cut
is an MILP which can be solved at relatively low computational expense. The nonlinear
underestimator for the objective function transforms this problem into a more challenging
convex MINLP. The inclusion of the new constraint leads to significant decreases in the
number of iterations for convergence in Runs 4b, 4c¢ and 4d. A reduction by almost tenfold

is observed for Run 4b. The total CPU time, however, increases by a factor of two to three

20

in all cases, reflecting the surge in computational requirements for each node.

Bound update frequency — Run series 5 Since the optimization-based procedure
results in much tighter bounds when the bound improvement constraint is included, the
value of this strategy is further investigated by varying the frequency of bound updates.
As can be expected, the average time per iteration decreases with the frequency of bound
updates. Overall, this compromise in the quality of the convex underestimators has a positive
effect on the performance of the algorithm. For Runs 5b and 5c, the optimum frequency in

terms of CPU time is every three iterations, while for Run 5d, it is every four iterations.

Number of bound update variables — Run series 6 Varying the number of vari-
ables for which bound updates are performed also decreases the average iteration costs and
increases the total number of iterations. The best results are obtained by updating four

temperature variables.

Summary of results In the best overall run (Run 6b), the heat exchanger network synthe-
sis problem is solved in 180 iterations and 315 CPU seconds. The results presented highlight
the trade-offs that must be made between the quality of the lower bounding problem and the
time expended to generate it. They also demonstrate that the presence of binary variables
can be exploited successfully to improve the performance of the SMIN-aBB algorithm both
through branching and bound updates.

3.2.2 Arithmetic mean temperature difference

Two examples taken from Zamora and Grossmann (1998a) are presented. The general
formulation for these examples is similar to that of the previous example. One significant
difference lies in the expression used for the area of the heat exchangers, which is based on
the arithmetic mean temperature difference rather than the logarithmic mean or the Chen

approximation. In the present case, the area of a heater for cold stream j is therefore given
by

C;,avQnu,;
- _ (8)
T’J (ATHUJ' + Tin,HU - Tout,j)

For a cooler for hot stream ¢, the area is approximated by

CicvQcu,
Ucu,i :
2 (ATey; + Touti — Tinyov)

21

Finally, for a heat exchanger between two streams ¢ and j in interval k, it is given by
CijQijk
Us;j '
= (AT + ATijk41)

(10)

In addition, the assumption of no stream splitting is imposed by adding two new sets of

linear constraints, namely

> z2(i,jk)=1, Vi€ HP, Vke ST, (11)
jeCP
> (i k)=1, VjeCP, VkeST. (12)
1€HP

In the following examples, a new variable AT/t

i 18 introduced to replace AT, + ATjjk 41

in Eq.(10). Thus, the area is expressed as

U]ﬂ Vie HP, VY j € CP, Yk € ST, (13)
Zig AT+
2 ijk
and the new linear constraint
ATZ.J.,c = ATy, + ATijgy1, Vi€ HP, V j € CP, Vk € ST, (14)

is incorporated in the problem. Thanks to this transformation, all nonconvex terms in the
problem are fractional, of the form z;/x, and can therefore be underestimated using the
convex envelope developed by Maranas and Floudas (1995). Thus, the area term for a cooler,

Eq. (9), is replaced by a new variable wey,; such that

wous > CicvQbu, n Ci,cuQcu,i
it Tous Ucus
< ATy + Touti — Tincv) S (ATEy; + Touti — Tinyov)
_ CiovQéu, (15)
Ucu,
CQU, (ATgU,Z + Tout,i - ﬂn,C’U)
Ci,CUQgUi Ci,cuQcu,i
Weu,i > Ucu,i (AT 4T T) + Ucu,i ATL T .. —T
D) CU,i out,i in,CU 2 (CUy + out,i m,CU)
Ci,CUQgU,i (16)

"~ Ucu, L
2 : (ATCU,Z' + Tout,z’ - Tz’n,CU)

and similar equations are used for a heater. The area cost for a hot stream-cold stream heat

exchanger, as shown in Eq. (13) is replaced by the new variable w;;;, such that

L L
CiiQijk CiiQijk CiiQijk

Wik = T Uij AU Uij AtiU (17)
2] ATZ’}—k 2] ATijk 2] ATijk
U U

wigE > CiiQijk CiiQiji _ CiiQij (18)

Usj + Usj +,L Usj +,L
2 ATz‘jk 2 ATz‘jk TATz‘jk

22

Finally, in the examples studied here, branching is performed on the variables that appear
in the fractional terms, therefore Egs. (6-7) are not used to update the bounds on these

variables.

Example 1 This corresponds to example 4 of Zamora and Grossmann (1998a). Two hot
streams and two cold streams are considered in a network with three temperature intervals.
There are 16 binary variables, 64 continuous variables and 108 linear constraints. There
are 16 fractional terms to be underestimated, one for each heat exchanger. A minimum
approach temperature of 1 K is used for this problem, providing a lower bound on the AT
and AT™T variables. The required stream data are listed in Table 7. The steam cost is
Cuu = $80/kW-yr, the cooling water cost is Coy = $20/kW-yr. The overall heat transfer
coefficient for the process stream heat exchangers and the coolers is 0.8 kW/m?-K, and
for the heaters, it is 1.2 kW/m?-K. The cost coefficients for heat exchangers and coolers
are CF = $6250/yr and C = $83.26/yr; for the heaters, they are CF = $6250/yr and C
= $99.91/yr. The global solution of the problem has a network cost of $74,711/yr and
involves heat exchangers between hot stream H2 and the cooling water, streams H1 and C1
in temperature intervals 1 and 3, streams H1 and C2 in temperature interval 2, and streams
H2 and C1 in temperature interval 2.

The number of iterations and the CPU time are reported for different branching and
bound update strategies in Table 8. For this formulation, it is best not to branch on the
binary variables at all. When the continuous branching variable selection is based on the
term measure, the heat duty and temperature difference variables are branched on equally.
A similar trend is observed when the maximum separation distance for fractional term is
used. When the variable measure is used instead, only the heat duties are selected and
better performance is obtained. This problem benefits from a tight initial lower bound of
$50,741/yr. Thus, while tightening the variable bounds enables the generation of a slightly
higher initial lower bound ($54,597/yr), the computational expense of this operation is not
justified by the decrease in number of iterations. The best performance is obtained without
any variable bound updates, when the algorithm converges in 69 iterations and 82.8 CPU
seconds. Zamora and Grossmann (1998a) solved this problem with tailored underestima-
tors after exploring 3 branch-and-bound nodes (156 CPU seconds on an IBM RISC/6000

workstation), for an absolute tolerance of 1.

Example 2 This problem is example 5 of Zamora and Grossmann (1998a). This time,

three hot streams and two cold streams are considered over three temperature intervals.

23

There are therefore 23 binary variables, 90 continuous variables and 147 linear constraints.
The stream data for this problem are listed in Table 9. The overall heat transfer coefficients
are computed based on the film heat transfer coefficients listed in the table. The steam cost
is Cygy = $110/kW-yr and the cooling water cost is Coy = $10/kW-yr. The area cost of
all heat exchangers is based on coefficients CF = $7400/yr and C = $80/yr. A minimum
approach temperature of 1°C is imposed. The global optimum solution has an annualized
network cost of $82,043/yr. It involves heat exchangers between hot streams H1 and H2 and
the cooling water, cold stream C2 and the steam utility, streams H3 and C2 in temperature
interval 1, and streams H3 and C1 in temperature interval 3.

The results of several runs are shown in Table 10. The same trends are observed as
for the previous example. When branching is performed on the continuous variables only,
using the variable measure, and no bound updates are involved, the SMIN-aBB algorithm
identifies the global optimum solution in 65 iterations and only 577.6 CPU seconds. Zamora
and Grossmann (1998a) solved this problem in 17 branch-and-bound nodes and 6 CPU hours
on an IBM RISC/6000 workstation. They also found that local optimization systematically

leads to suboptimal configurations, highlighting the need for a global optimization approach.

3.2.3 Summary of results

The SMIN-aBB algorithm performed very well on two heat exchanger network synthesis
problems in which the arithmetic mean temperature difference served to approximate the
area. In the first instance, a relative convergence of 10~3 for a problem involving two hot
streams, two cold streams and three temperature intervals was achieved in 67 iterations and
83 CPU seconds on an HP-C160. For the second problem, involving three hot streams, two
cold streams and three temperature intervals, convergence was reached in 65 iterations and
578 CPU seconds. The most successful strategy was based on using the convex envelope for
fractional terms, the variable measure to select a branching variable among the heat duties
and no variable bound tightening. In marked difference to the heat exchanger network
synthesis problem with the Chen approximation, branching on binary variables does not

prove a worthwhile strategy.

4 The GMIN-aBB algorithm

Although the SMIN-aBB algorithm presented in Sections 2 and 3 is applicable to a large
class of problems, the participation of the binary variables is restricted to linear and mixed-

bilinear terms. While many problems can be expressed in this form, equivalent but smaller

24

problems can often be formulated by allowing greater flexibility in the functionality of the
integer variables. The GMIN-aBB algorithm is therefore introduced to tackle the broad

class of problems represented by

{,gl;} f(z,y)
st. g(z,y) <0
h(z,y) =0 (19)

y €[yt yYInNT

where f(x,y), g(x,y) and h(x,y) are functions whose continuous relaxation is twice con-
tinuously differentiable, ¢ is the number of integer variables and N is the set of integers.
The GMIN-aBB algorithm overcomes the limitations of the standard branch-and-bound
approaches for MINLPs (Beale, 1977; Gupta and Ravindran, 1985; Ostrovsky et al., 1990;
Borchers and Mitchell, 1991; Quesada and Grossmann, 1992) by making use of the «BB
algorithm. The solution space is explored by branching on at least one integer variable at
each node. A lower bound on the solution of the problem within a given region is obtained
by solving a continuous relaxation of the mixed-integer problem. The validity of the lower
bound and hence the optimality properties of the final solution depend on the ability to
identify the global optimal solution of the relaxation. For the general problems represented
by (19), the efficient generation of a valid lower bound is a challenging issue and is discussed

in the next section.

4.1 Generation of a valid lower bound

The nonconvex MINLP at the current node of the branch-and-bound tree is relaxed to a
nonconvex NLP. The aBB global optimization algorithm for twice continuously differentiable
NLPs is then used to obtain a valid lower bound at that node. At every iteration of the «BB
algorithm, a lower bounding problem for the nonconvex NLP is formulated. It is derived in
same way as problem (3), the lower bounding problem for the SMIN-aBB algorithm, in the
case where there are no binary variables. One of two approaches can be used when running

the aBB algorithm to get a lower bound on the continuous relaxation.

Strategy 1 Run the aBB algorithm to completion to obtain the global solution of the

continuous relaxation,

Strategy 2 Run the aBB algorithm for a few iterations to obtain a valid lower bound on

the global solution of the continuous relaxation.

25

In all branch-and-bound algorithms proposed to date, the lower bounding problem is
solved to completion, following Strategy 1. Strategy 2 recognizes the fact that a lower
bound on the solution of the relaxed MINLP is also a lower bound on the solution of the
nonconvex MINLP. In order to ensure that the GMIN-aBB algorithm converges in a finite
number of iterations, the validity of the lower bounds is not sufficient (Horst and Tuy, 1996)

and two additional conditions must be met:

1. The global solution must be identified for nodes on the terminal level of the B&B tree,
when all integer variables are fixed and the upper and lower bounding problems are

identical.

2. A nondecreasing sequence of lower bounds must be generated for the GMIN-aBB

algorithm (consistent bounding procedure),

If the continuous relaxation is solved to global optimality at every node (Strategy 1), these
two conditions are always satisfied. The only way to meet the requirements of Condition 1
is to apply Strategy 1 at all terminal nodes of the branch-and-bound tree. In a consistent
bounding procedure, the lower bound for any given node is equal to or greater than the lower
bound generated for the parent node. This additional criterion must be tested whenever

Strategy 2 is used and the aBB algorithm is stopped early at a non-terminal node.

4.1.1 Stopping criteria

Strategy 2 makes use of the fact that the rate of improvement of the lower bound on the global
solution of a nonconvex NLP is usually high at early iterations of the BB algorithm and
then gradually tapers off. The number of iterations required to reach the slow convergence
phase depends on the characteristics of the NLP. To illustrate this point, we define the
NLP

relative quality, p, of the lower bound on the objective function at iteration i, L , as

p = (LNLP - iéVLP)/(fNLP’* — LZ)VLP), where fNEP* is the global solution. The relative
quality p is plotted in Figure 6 for five nonconvex continuous relaxations of the pump network
synthesis problem to be presented in Section 5.2. In each case, some of the integer variables
are fixed to the values indicated on the figure and the aBB is run for forty iterations. For
z = (0,0,1), the lower bound improves significantly over the first 30 iterations, while for
z = (1,1,0), rapid progress is seen for only 15 iterations.

To maximize the lower bound improvement rate for the GMIN-aBB algorithm, the o BB
algorithm should not be run in the regions of slow convergence. An adaptive rule that
monitors the progress of the BB run is proposed in order to ensure that the algorithm is

stopped when the convergence rate tapers off. It checks whether over the last m iterations,

26

where m is a user-specified quantity, the convergence of the algorithm has at least improved
by some fraction r. Let fjv “" be the best known upper bound on the solution of the NLP
at iteration ¢ and let f ZN LP he the lower bound at iteration i. Then, the oBB run is allowed
to proceed to iteration 7 4+ 1, ¢ > m, as long as
(70 e _ (gi2e _ g
> 7. (20)

—NLP

NLP
fi—m ii—m

Typically, m can be set to 3 iterations and r to 30%. To preserve the consistency of the
bounding procedure, this stopping criterion must only be imposed on the current node after
its lower bound ifv LP greater than or equal to f*, the lowest lower bound on the global
solution of the original nonconvex MINLP.

An effective way to further reduce the computational expense of aBB runs is to make use
of the best known upper bound on the global optimum solution of the nonconvex MINLP,
?*. This can either be incorporated in the NLP as a constraint that specifies an upper bound
on the objective function, or it can be added as a stopping criterion for the NLP algorithm.
This latter option was chosen in the implementation.

The procedure used to generate a lower bound on a nonconvex MINLP for a non-terminal

node is summarized in Figure 7.

4.2 Generation of a valid upper bound

An upper bound on the solution of a given node can be obtained in several ways. If the solu-
tion of the continuous relaxation is integer-feasible, that is, all the relaxed integer variables
have integer values at the solution, this solution is both a lower and an upper bound on the
current node. If the BB algorithm was run for only a few iterations and the relaxed integer
variables are integer at the lower bound, they can be fixed to these integer values and the
resulting nonconvex NLP can be solved locally to yield an upper bound on the solution of
the node. Finally, a set of integer values satisfying the integer constraints can be used to
construct a nonconvex NLP whose local solutions are upper bounds on the solution of the

current node.

4.3 Branching variable selection

A number of selection rules have been discussed in the literature on branch-and-bound
algorithms for convex MINLPs: most fractional variable (Gupta and Ravindran, 1985;

Ostrovsky et al., 1990), branching priorities (Gupta and Ravindran, 1985) and pseudo-costs

27

(Benichou et al., 1971; Gupta and Ravindran, 1985). However, rules that systematically
lead to the optimal performance of the algorithm remain elusive. Several approaches have
been implemented in the GMIN-aBB algorithm. As in the SMIN-aBB algorithm, an in-
teger variable can be chosen randomly or according to branching priorities. An additional
rule consists of selecting the most or least fractional variable at the solution of a continuous
relaxation of the problem. This comes at no additional cost since a continuous relaxation
is solved at each node. Whether the most or least fractional variable is used, the expected
outcome is that the lower bounds on the children node should be dramatically different from
that of the parent node. The bisection of the range of the selected variable takes place at
the midpoint or at the solution of the lower bounding problem. It is also possible to branch

on more than one variable at a given node, or to perform k-section on one of the variables.

4.4 Variable bound updates

The same general strategies are used for variable bound tightening as in the SMIN-aBB al-
gorithm, namely an optimization-based or an interval-based approach. By taking advantage
of the integrality of the y variables, these two techniques can be extended to update bounds

on integer variables.

4.4.1 Optimization-based approach

In the optimization approach, the lower or upper bound on variable y; is improved by first
relaxing the integer variables, and generating a convex lower bounding NLP based on the
constraints in the original problem and, optionally, the objective function cut. The mini-
mization or maximization of y; is taken as the objective. The final updated lower or upper

bound on the integer variable is obtained by setting yX = [y*] or y¥ = |y*].

4.4.2 Interval-based approach

In the interval-based approach, an iterative procedure is followed based on an interval test
which provides necessary conditions for the feasibility of the original constraints and the
bound improvement constraint f(z,y) < J , given the relaxed region (z,y) € [z%, 2U] x
[y®, yY]. The approach is similar to that followed for continuous variables in Section 2.3.2.
The modified procedure to improve the lower (upper) bound on variable y; ensures that the
integrality of the variable bounds is maintained at every iteration, as shown in Table 11.
The procedure that was developed for the SMIN-aBB algorithm in order to tighten binary

variable bounds is a special case of the general approach presented here.

28

4.5 Reducing the integrality gap

The use of continuous relaxation to solve a mixed-integer problem may result in a large
integrality gap, especially at early nodes in the branch-and-bound tree. In order to narrow
this gap, it is important to preserve the discrete nature of the problem as much as possible.

We propose several measures which help achieve this goal.

4.5.1 Partial relaxation

To obtain a tighter lower bound, we can identify all binary variables in the problem which
participate only in linear or mixed-bilinear terms. If such variables exist, they do not need to
be relaxed to formulate the lower bounding problem. The partial continuous relaxation that
results from this approach is a nonconvex MINLP of type (1) which can be solved to global
optimality using the SMIN-aBB algorithm. The overall lower bounding strategy remains
the same, but the BB algorithm is replaced by the SMIN-aBB algorithm.

4.5.2 Modified branching and bound updates

For its success, the GMIN-aBB algorithm relies heavily on the ability of the BB algorithm
to solve the subproblems generated by the main driver. The use of specialized algorithms to
solve subproblems is a common feature of branch-and-bound and decomposition algorithms,
as exemplified by the OA/ER (Duran and Grossmann, 1986; Kocis and Grossmann, 1989) or
the GBD (Geoffrion, 1972). In general, the interaction between the higher level driver and
the algorithms it uses is limited to the exchange of subproblem formulation and solution.
This level of communication has already been increased in order to improve the performance
of the GMIN-aBB algorithm: the higher level driver imposes a new, tailored termination
criterion on the BB algorithm. By passing more information down to the aBB algorithm,
further improvements can be obtained. Thus, although the integer variables are relaxed
during any BB run, their underlying integrality should be exploited in order to increase the
quality of the lower bounds generated. The branching and variable bound update strategies

of the aBB algorithm can be modified as follows.

Branching Whenever a relaxed integer variable is branched on within the BB algorithm,
the bounds on that variable should be rounded to the nearest integer. Thus, if branching
takes place through a bisection at the midpoint for variable y € [y, yV], the two new regions
should correspond to y € [y%, [yM]|] and y € [[yM],yY], with y¥ = #, as already
happens in the higher level driver. This strategy in turn affects the theoretical basis of the

29

overall algorithm: by communicating the integrality constraints to the lower level algorithm,
we remove the clear-cut distinction between the mixed-integer problem and its relaxation.
As a result, the lower bound generated by the aBB algorithm is not necessarily a valid
lower bound on the continuous relaxation. However, it is always a lower bound on the
global solution of the nonconvex MINLP at the current node. The theoretical limitation of
the integrality gap is thus removed. The minimum achievable distance between the global
solution of the nonconvex MINLP at the current node and the generated lower bound cannot

be predicted, but it is smaller than or equal to the integrality gap.

Variable bound updates When variable bound updates are also used to improve the
quality of the lower bounding problem during an aBB run, a larger reduction in the solution
space can be achieved by applying one of the integer bound update strategies described in

Section 4.4 to the relaxed y variables.

4.6 Algorithmic procedure
4.6.1 Flowchart

The upper and lower bound generation schemes, the branching strategies for integer variables
and the bound update techniques are combined to produce the GMIN-aBB algorithm. The

main steps of the algorithm are shown in Figure 8.

4.6.2 Illustrative example

The algorithmic procedure for the GMIN-aBB algorithm is illustrated using the same ex-
ample as for the SMIN-aBB algorithm. The branch-and-bound tree is shown in Figure 9
using the same notation as previously. At the first node, the continuous relaxation of the
nonconvex MINLP is solved for ten BB iterations to yield a lower bound of 48.6. No upper
bound is found. Next, the binary variable y, is chosen for branching and the continuous
relaxation of the problem with y, = 0 is solved. A lower bound of 92.2 is found as the global
solution to this nonconvex NLP. The variable y; is equal to 1 at this solution which therefore
provides an upper bound on the global optimum solution of the nonconvex MINLP. The
region gy = 1 is then examined and the lower bound on the the NLP is found to be 97.0
at the sixth aBB iteration. Since this is greater than the best upper on the global solution
of the MINLP, the BB run is terminated and this node can be fathomed. The bounds on

the solution are within the pre-specified relative tolerance of 1073 at the left child of node 1

30

and convergence has therefore been achieved. The run is terminated in 2 CPU seconds on
an HP-C160.

5 Computational studies for the GMIN-aBB algorithm

The performance of the GMIN-aBB algorithm is tested on a series of literature problems
and on MINLPs of a very general form, representing a pump network synthesis problem and
problems from the paper cutting industry. All runs are carried out on an HP-C160, with a

relative tolerance of 1073.

5.1 Literature examples

The same literature problems as for the SMIN-aBB algorithm are solved with the GMIN-
aBB algorithm. Although no reformulation is needed in this case, both reformulated prob-
lems and original formulations are solved. The results are reported in Table 2.

Both the SMIN-aBB and GMIN-aBB algorithms performed well on this suite of small test
problems: they were able to identify the global optimum solution with little computational
effort. For larger problems, the SMIN-aBB algorithm yielded slightly better results than the
GMIN-aBB algorithm, possibly because it does not require the relaxation of the integrality
conditions on the integer variables. However, the generality of the GMIN-aBB algorithm
means that no reformulation is necessary to solve highly nonconvex problems in the integer

variables.

5.2 Pump network synthesis

In this example, taken from Westerlund et al. (1994), the aim is to identify the least costly
configuration of centrifugal pumps that achieves a pre-specified pressure rise based on a
given total flowrate. The problem belongs to the class of nonconvex MINLPs that can be
addressed by the GMIN-aBB algorithm: it involves integer variables that participate in
highly nonconvex terms. As an illustration, Figure 10 shows a schematic representation of
a three level pump configuration, where each level corresponds to a different pump type.
Figure 11 shows the global optimal configuration, corresponding to an annualized cost of
128,894 FIM*.

The structural decisions for an L level superstructure are represented by a number of

discrete variables. The binary variables z;, ¢ = 1,..., L, denote the existence of level . The

4FIM stands for Finmark

31

integer variables Np;, i = 1,..., L, denote the number of parallel lines at level i (Np; €
{0,...,NP}, where NP is the maximum number of parallel lines). The integer variables
Ns;, i = 1,...,L, denote the number of pumps in series at level i (Ns; € {0,...,NS},
where NS is the maximum number of pumps in series). The relevant continuous variables
are the fraction of total flow going to level ¢, z;, the flowrate on each line at level ¢, v;,
the rotation speed of all pumps on level i, w;, the power requirements at level 7, P; and
the pressure rise at level 7, Ap;. For a three-level superstructure, the minimization of the
annualized cost is given by

3

=1

st Y xi=1
Py (g = () —)i =0

Api = (o) — by()i — cii? = 0
Ui Np; — 2;Vie = 0

AP,yzi — Ap;Ns; = 0

0<z; <1, 0< 9 < Vi pi=1,2,3
0 <wi < wnag, 0 < B < P
0< Ap; < APy

Np; € {0,1,2,3}, Ns; € {0,1,2,3}
z € {0,1}

)

(21)

/

The parameter values are given in Table 12. The capital costs are annualized by multiplying
the fixed pump costs by a factor of 0.1627 which corresponds to a 10% interest rate and a
10 year life. The operating costs are based on 6000 hours per year and an electricity cost of
0.3 FIM/kWh. An explicit formulation of this problem is given in Floudas et al. (1999).

Formulation (21) is nonconvex in the continuous and integer variables. Thirty seven
local minima have previously been reported for this problem by Westerlund et al. (1994)
who solved it locally only. Considering the range of values of the integer variables, over 32,000
combinations could be obtained. The reformulation/branch-and-bound global optimization
algorithm of Smith and Pantelides (1997, 1999) required the exploration of 1238 nodes and
over twelve hours of CPU time on a Sun SPARCstation 10/51. The GMIN-aBB algorithm is
used here to tackle the problem. Different strategies are tested for lower bound generation,
branching variable selection and variable bound tightening.

Some of the integer variables contribute more than others to the complexity of the prob-
lem. Specifically, the binary variables, z;, associated with the existence or non-existence

of a level, are important because they help reduce the size of the NLP problem by setting

32

the variables associated with a particular level to zero when that level does not exist. The

following additional linear constraints can reflect this fact.

P <z P™% Ap; < 2 APy Ui < 23 Vit zi < 25

wi < 2j Wimaz; Np; <z NP; Ns; <z NS.

5.2.1 Lower bound generation

Because the relaxed NLP formulation is highly nonlinear, the aBB algorithm is not run
to completion unless all integer variables are fixed. As discussed in Section 4.1, a balance
must be found between the computational cost of generating a lower bound and its quality,
that is, its proximity to the global solution of the relaxation. The problem is first solved
by imposing different limits on the maximum number of aBB iterations, iter,,,,. Along the
GMIN-aBB tree, the most fractional variable at the solution of the lower bounding problem
is selected for branching and no bound updates are performed. When the aBB algorithm
is entered, the bounds on all variables are updated once and the third branching strategy
is used (see Section 2.2.1) to select a continuous or relaxed integer variable. The stopping
criterion used for the BB algorithm includes the maximum number of iterations, iter;,q.,
the upper bound on the global optimum solution of the nonconvex MINLP and the lower
bound on the relaxation of the parent node (see Figure 7). The results are shown in Runs 1
to 4 of Table 13. The average time requirements per node when iter,,,, is two iterations only
(Run 1) are twelve times smaller than when it is one hundred (Run 4). In Run 1, the «BB
run is stopped upon reaching iter,,q; for 53% of the nodes in the GMIN-aBB tree. Only
one aBB iteration is performed at another 39% of the nodes. This means that, at the first
iteration, the underestimating problem is found to be infeasible or its solution is greater than
the upper bound on the global optimum solution of the MINLP. For the remaining 8% of the
nodes, all integer variables are fixed and iter,,q, can no longer be used as a stopping criterion.
These nodes require between 2 and 135 iterations. In Run 3, the maximum number of BB
iterations is used as a stopping criterion for 52% of the nodes. For 35% of the GMIN-aBB
nodes, only one BB iteration is needed. The remaining 56 nodes require a wide array of

run lengths, with 50 nodes involving less than twenty BB iterations.

5.2.2 Branching strategy

The importance of the z; variables suggests a branching scheme in which high priorities are
assigned to these three binary variables. After the third level of the GMIN-aBB tree, the
remaining integer variables are branched on based on the most fractional variable rule. The

results for this strategy using different values of iter,,,, are shown in Runs 5 to 8 of Table 13.

33

This strategy has a beneficial effect on all runs. The number of nodes generally decreases
and the CPU requirements are reduced in all cases, and by up to 21%. The generation of
tighter convex relaxations that results from fixing important variables first permits the fast

elimination of an increased number of nodes.

5.2.3 Variable bound updates

The bounds on the integer variables can be updated at every iteration of the GMIN-aBB
algorithm using the optimization and interval based approaches described in Section 4.4.
The results using the optimization-based procedure are shown in Runs 9 to 12 of Table 13.
The number of nodes decreases by at least 69% and the reduction in CPU time ranges from
63 to 79%, showing the value of bound updates for the integer variables. When the problem
is solved with interval-based bound updates, this strategy does not result in a significant

reduction of the variable ranges.

5.2.4 Automatic aBB run termination

The runs completed so far have demonstrated the importance of the maximum number of
aBB iterations, the prioritization of the branching variables and the optimization-based
bound updates for the success of a GMIN-aBB run. As discussed in Section 4.1, the ideal
value of iter,,q;, the maximum number of aBB iterations, depends on the structure of the
problem. The results shown in Table 14 are obtained by imposing the adaptive test of
Eq. (20), with different values of m and r. The first conclusion that may be drawn from
this table is that the automatic stopping criterion leads to runs of the same quality as a
user-specified maximum number of iterations. Overall, the behavior of the algorithm seems
quite robust to changes in the values of m and r. Figures 12 and 13 show the number of «BB
iterations for each GMIN-aBB node as the search progresses for » = 0.1 and m =1 or 15.
The same general trends are observed in both cases. Initially, most BB runs carry on for
the minimum number of iterations as the continuous relaxation has a large feasible region
and the progress of the lower bound is slow. Then, as more integer variables are fixed, the
aBB algorithm is run for longer periods. This generates tight upper and lower bounds on the
solution. In the latter stage of the GMIN-aBB run, nodes can be fathomed after only a few
aBB iterations by using the best know upper bound. Imposing a minimum of fifteen BB
iterations before performing the first test of the rate of lower bound improvement clearly

requires more resources than testing at every iteration.

34

5.2.5 Summary of results

The GMIN-aBB algorithm successfully solves a highly nonlinear mixed integer problem to
global optimality. The different schemes described in Section 4 have a significant effect on
the performance of the algorithm. In particular, a limited number of BB iterations, the
appropriate selection of a branching variable and tight variable bounds all contribute to
increasing its efficiency. With this strategy, a relative convergence of 1072 is achieved after
147 GMIN-aBB nodes and 927 CPU seconds on an HP-C160.

5.3 Trim loss minimization problems

Trim loss minimization problems arise in the paper cutting industry and have been studied in
the context of integer nonconvex optimization by Harjunkoski et al. (1996) and Harjunkoski
(1997), who have studied the use of reformulation to solve the problem. The main task is to
cut out some paper products of different sizes from a large raw paper roll, in order to meet
a customer’s order. Each product paper roll is characterized by its width b. All product
rolls are assumed to be of equal length. The raw paper roll has a width B,,,,. In general,
it is not possible to cut out an entire order without throwing away some of the raw paper.
The optimum cutting scheme minimizes the waste paper or trim loss. In order to identify
the best overall scheme, a maximum number of different cutting patterns P is postulated,
where a pattern is defined by the position of the knives. Each cutting pattern may have to
be repeated several times in the overall scheme to meet the demand. There are N different
product sizes and n; rolls of size b; must be cut. The existence of each pattern is denoted
by a binary variable z;, 7 =1,..., P. The number of repeats of pattern j is denoted by the
integer variable m;. The number of products of size 7 in pattern j is given by the integer

variable 7;;. A sample cut is shown in Figure 14 for

4 2 0 2 3
N=3,n=|5],m=]1 andr=1| 41 0
5 1 0 0 2

Some additional constraints are imposed on the cutting patterns. For instance, each
pattern must have a minimum total width of B,,,, — A. The number of knives is limited
t0 Nkyqaz SO there can be no more than Nk,,,, products in a pattern. The general problem

formulation is mostly linear except for the product-order constraints which are bilinear in

35

the m; and r;; variables.
P
min >, ¢;m; + Cjy;
™ Y;iTij j—1

s.t. ij r,-jzni, 121, ,N
J

(Bmaz_A)y] Szbz Tij SBmlm: yj; .7:]-7 7P
i
ngzrijSNkmaz Y,]Zla 7P
7

o[[[
J
Y1 <Y, k=1,...,P—1
M1 <mg, k=1,... ,P—1
y; €{0,1}, j=1,...,P
m; € [0,M;]NN, j=1,...,P
rij € [0, Nkpag) NN, i=1,... N, j=1,...,P

wherec; =1, j=1,... ,Pand C; =0.15,j=1,...,P.

This model is used for the four problems listed in Appendix B and discussed in (Floudas

et al., 1999). The number of combinations of the integer variables are respectively 106,
10'%, 10?2 and 103!. The set of feasible combinations is smaller, but cannot be determined
a priori. The value of the objective function at the global optimum solution is shown in
Table 15 for each problem, together with values of the variables. There are usually several
globally optimum sets of patterns and only one is listed here. An interesting feature of these
problems is the small size of the integrality gap (Table 15). It indicates that the generation
of tight lower bounds on the nonconvex MINLPs should not be a bottleneck.

This set of trim loss minimization problems is solved using the GMIN-aBB algorithm
with different options. The nature of the problem is such that the lower bound often reaches
the value of the global optimum solution even though not all variables are integer. Since
convergence can only be declared when an integer solution is found, the performance statistics
can vary dramatically from run to run. Each problem is therefore solved one hundred times
and the mean and standard deviation of the number of iterations and CPU time are reported

here.

5.3.1 Branching variable selection

When the branching variable is selected based on the most fractional variable at the solution

of the lower bounding problem, all runs take over one hour to converge. Since the non-

36

existence of a pattern i (y; = 0) eliminates the corresponding m; and r;; variables from the
problem, the y variables are assigned the highest priority. The m variables are branched on
next, and the r variables follow. The results using this branching strategy, a maximum of
one hundred BB iterations and no bound updates are shown in Table 16 under strategy
(a). Although the average CPU time per run is greatly improved, the standard deviation on

every run is large.

5.3.2 Variable bound updates

The bounds on all integer variables are now tightened through the optimization-based pro-
cedure. The results, presented in Table 16 under strategy (b), show that the mean number
of nodes decreases by 53 to 93% and the mean CPU time decreases by 74 to 94%.

5.3.3 Automatic BB run termination

The test of lower bound improvement rate is imposed on the BB runs using values of m and
r that were successful for the pump network synthesis example, namely m = 3 iterations and
r = 30%. The results, shown in Table 16 under strategy (c), indicate that the criterion used
is too stringent for this problem as a few more nodes must be explored on average before
the global optimum solution is found than when one hundred aBB iterations are allowed.
However, the computational requirements are sufficiently close to the best values obtained so

far to warrant adopting the automatic stopping criterion with m = 3 iterations and r = 0.3.

5.3.4 Summary of results

The GMIN-aBB algorithm succesfully identifies the global optimum solution of a series of
nonconvex integer programs. In spite of the large number of possible combinations of the
integer variables, all problems are solved to global optimality after exploring less than 100
nodes and in under one minute of CPU time on an HP-C160, for a relative tolerance of 1073.
The trim loss minimization and pump network synthesis case studies highlight the benefits of
new stopping criteria developed for the solution of the continuous relaxation. The selection
of appropriate branching variables also plays a key role in ensuring high performance of the

algorithm.

37

6 Comparison of the SMIN-aBB and GMIN-aBB al-

gorithms

Any problem of the general form (19) can be transformed to an equivalent problem of the
more restrictive form (1). The resulting problem can then be solved with the SMIN-aBB and
the GMIN-aBB algorithm. Given this flexibility, the issue of algorithm choice must explored
to determine whether any benefits can be derived by implementing the two algorithms, and
what criteria should be applied to decide which algorithm to use.

In previous sections, the physical characteristics of the medium-size problems considered
dictated the mathematical formulation used through the choice of integer or binary variables
and the types of nonconvexities involved. When a problem was found to fall into the form
shown in (1), it was solved with the SMIN-aBB algorithm. In all other cases, it was solved
with the GMIN-aBB algorithm. The issue of algorithm selection is investigated in this
section by comparing the performance of the SMIN-aBB and GMIN-aBB algorithms on
the same problems. The heat exchanger problems are thus solved using the GMIN-aBB
algorithm. All other problems are reformulated into form (1) and solved with the SMIN-
aBB algorithm. The reformulation is also solved with the GMIN-aBB algorithm. Since
the number of iterations or nodes have very different meanings for the two algorithms, they
cannot be compared usefully. The most interesting result is therefore the CPU time, which is
reported in Table 17 for the best set of options for each choice of algorithm and formulation.
In the case where two different formulations are solved with the GMIN-aBB algorithm, the
number of nodes is also noted.

For problems of form (1), the SMIN-aBB algorithm outperforms the GMIN-aBB algo-
rithm in most cases. This can be attributed to the fact that the binary variables are not
relaxed in the SMIN-aBB algorithm, leading to tighter lower bounds and improved conver-
gence characteristics. However, a different conclusion is reached when comparing problems
with unrestricted participation of the integer variables — solved by the GMIN-aBB algo-
rithm — and their reformulated equivalent — solved by the SMIN-aBB algorithm. In every
instance, better performance is found with the GMIN-aBB algorithm despite the relaxation
of the integer variables. While no single factor explaining this behavior can be found, problem
size may play a role as the number of variable increases through reformulation to form (1).
The transformation of a single integer variable to a set of binary variables also leads to some
disaggregation whereby a physically meaningful entity is considered as several independent,
mathematical objects during the solution procedure. Thus branching on an integer z at

its midpoint creates two subregions which represent small values of z and large values of z

38

respectively. On the other hand, if z is expressed as a sum of n binaries z = Zi":_ol 24y
branching on a variable y;, 0 < i < n — 1, leads to two regions void of physical meaning. As
a result, the branching variable selection tends to be less effective for the reformulation.
Based on this series of comparative runs, it is therefore recommended to formulate the
optimization problem using integer variables that closely reproduce the physical structure of

the problem, and to avoid relaxation of the binary variables.

7 Conclusions

Two global optimization techniques for nonconvex MINLPs that capitalize on the advances of
the BB algorithm have been proposed. The first approach, the SMIN-aBB algorithm, iden-
tifies the global optimum solution of problems in which binary variables participate in linear
or mixed-bilinear terms and continuous variables appear in continuous twice-differentiable
functions. The partitioning of the solution space takes place in both the continuous and
binary domains. The GMIN-aBB algorithm is designed to locate the global optimum solu-
tion of problems involving integer and continuous variables in functions whose continuous
relaxation is continuous and twice-differentiable. In this algorithm, branching occurs on the
integer variables only and a continuous relaxation of the problem is constructed during the
bounding step. It uses the aBB algorithm for the efficient and rigorous generation of lower
bounds. Both algorithms are widely applicable and have been successfully tested on a variety
of medium-size nonconvex MINLPs. A comparative study has highlighted the importance of
physically meaningful integer /binary variables in the formulation of the problem. This, in
turn, motivates the need for algorithms which can handle binary or integer variables without

reformulation.

Acknowledgments

The authors gratefully acknowledge financial support from the National Science Foun-
dation, the Air Force Office of Scientific Research, the National Institutes of Health, Exxon
Foundation and Mobil Technology Company.

References

Adjiman, C. S., I. P. Androulakis, and C. A. Floudas, “Global Optimization of MINLP
Problems in Process Synthesis and Design,” Computers chem. Engng., 21, S445 (1997).

39

Adjiman, C. S.; I. P. Androulakis, and C. A. Floudas, “A Global Optimization Method,
aBB, for General Twice-Differentiable Constrained NLPs — II. Implementation and Com-

putational Results,” Computers and Chemical Engineering, 22, 1159 (1998b).

Adjiman, C. S.; S. Dallwig, C. A. Floudas, and A. Neumaier, “A Global Optimization
Method, aBB, for General Twice-Differentiable NLPs — I. Theoretical Advances,” Comput-
ers and Chemical Engineering, 22, 1137 (1998a).

Adjiman, C. S. and C. A. Floudas, “Rigorous Convex Underestimators for General Twice-
Differentiable Problems,” J. of Glob. Opt., 9, 23 (1996).

Adjiman, C. S., C. A. Schweiger, and C. A. Floudas, “Mixed-Integer Nonlinear Optimization
in Process Synthesis,” Handbook of Combinatorial Optimization, Du, D.-Z. and P. Pardalos,
eds., Kluwer Academic Publishers (1999).

Androulakis, I. P., C. D. Maranas, and C. A. Floudas, “aBB : A Global Optimization
Method for General Constrained Nonconvex Problems,” J. of Glob. Opt., 7, 337 (1995).

Beale, E. M. L., “Integer Programming,” The State of the Art in Numerical Analysis,
409-448, Academic Press (1977).

Benders, J. F., “Partitioning Procedures for Solving Mixed-Variables Programming Prob-
lems,” Numer. Math., 4, 238 (1962).

Benichou, M., J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent, “Ex-
periments in Mixed-Integer Linear Programming,” Math. Programming, 1(1), 76 (1971).

Berman, O. and N. Ashrafi, “Optimization Models for Reliability of Modular Software
Systems,” IEEE Transactions on Software Engineering, 19(11), 1119 (1993).

Borchers, B. and J. E. Mitchell, “An Improved Branch and Bound Algorithm for Mixed
Integer Nonlinear Programs,” Tech. Rep. 200, Renssellaer Polytechnic Institute (1991).

Cardoso, M. F., R. L. Salcedo, S. Feyo de Azevedo, and D. Barbosa, “A Simulated Annealing
Approach to the Solution of MINLP Problems,” Computers and Chemical Engineering,
21(12), 1349 (1997).

Chen, J. J. J., “Comments on Improvements on a Replacement for the Logarithmic Mean,”
Chemical Engineering Science, 42(10), 2488 (1987).

Duran, D. A. and I. E. Grossmann, “An Outer-Approximation Algorithm for a Class of
Mixed-Integer Nonlinear Programs,” Math. Prog., 36, 307 (1986).

40

Falk, J. E. and R. M. Soland, “An Algorithm for Separable Nonconvex Programming Prob-
lems,” Management Science, 15(9), 550 (1969).

Floudas, C. A., Nonlinear and Mized-Integer Optimization. Fundamentals and Applications,
Oxford University Press, New York (1995).

Floudas, C. A., A. Aggarwal, and A. R. Ciric, “Global Optimum Search for Nonconvex
NLP and MINLP Problems,” Computers and Chemical Engineering, 13(10), 1117 (1989).

Floudas, C. A. and I. E. Grossmann, “Algorithmic Approaches to Process Synthesis: Logic
and Global Optimization,” FOCAPD’94, vol. 91 of AICHE Symposium Series, 198-221
(1995).

Floudas, C. A., P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Giimiis, S. T. Harding,
J. L. Klepeis, C. A. Meyer, and C. A. Schweiger, Handbook of Test Problems in Local and
Global Optimization, Kluwer Academic Press (1999).

Geoffrion, A. M., “Generalized Benders Decomposition,” J. of Optimization Theory and
Applications, 10, 237 (1972).

Grossmann, 1. E.; ed., Global Optimization in Engineering Design, Kluwer Academic Pub-
lishers, Dordrecht (1996).

Gupta, O. K. and R. Ravindran, “Branch and Bound Experiments in Convex Nonlinear

Integer Programing,” Management Science, 31, 1533 (1985).

Hamed, A. and G. P. McCormick, “Calculation of Bounds on Variables Satisfying Nonlinear
Equality Constraints,” J. Global Optimization, 3, 25 (1993).

Hansen, P.; B. Jaumard, and S.-H. Lu, “An Analytical Approach to Global Optimization,”
Mathematical Programming, 52, 227 (1991).

Harjunkoski, 1., Application of MINLP Methods on a Scheduling Problem in the Paper
Converting Industry, Ph.D. thesis, Abo Akademi University, Abo, Finland (1997).

Harjunkoski, I., T. Westerlund, J. Isaksson, and H. Skrifvars, “Different Formulations for
Solving Trim Loss Problems in a Paper-Converting Mill with ILP,” Computers and Chem-
ical Engineering, 20, S121 (1996).

Horst, R. and H. Tuy, Global Optimization: Deterministic Approaches, Springer-Verlag,
Berlin (1996), 3rd edition.

41

Kocis, G. R. and I. E. Grossmann, “Relaxation Strategy for the Structural Optimization
of Process Flow Sheets,” Industrial and Engineering Chemistry Research, 26, 1869 (1987).

Kocis, G. R. and 1. E. Grossmann, “Global Optimization of Nonconvex Mixed-Integer Non-
linear Programming (MINLP) Problems in Process Synthesis,” I&ECR, 27, 1407 (1988).

Kocis, G. R. and . E. Grossmann, “A Modeling and Decomposition Strategy for the MINLP

”

Optimization of Process Flowsheets,” Computers and Chemical Engineering, 13(7), 797

(1989).

Lee, K. F., A. H. Masso, and D. F. Rudd, “Branch and Bound Synthesis of Integrated
Process Designs,” Ind Eng Chem Fund, 9, 48 (1970).

Maranas, C. D. and C. Floudas, “Finding all solutions of nonlinearly constrained systems
of equatio ns,” Journal of Global Optimization, 7(2), 143 (1995).

Maranas, C. D. and C. Floudas, “Global optimization in generalized geometric program-
ming,” Computers chem. Engng., 21(4), 351 (1997).

McCormick, G. P., “Computability of Global Solutions to Factorable Nonconvex Programs :
Part I — Convex Underestimating Problems,” Math. Programming, 10, 147 (1976).

Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ (1979).

Neumaier, A., Interval Methods for Systems of Equations, Encyclopedia of Mathematics
and its Applications, Cambridge University Press (1990).

Ostrovsky, G. M., M. G. Ostrovsky, and G. W. Mikhailow, “Discrete Optimization of
Chemical Processes,” Computers and Chemical Engineering, 14, 111 (1990).

Porn, R., I. Harjunkoski, and T. Westerlund, “Convexification of Different Classes of Non-

Convex MINLP Problems,” Submitted to Computers and Chemical Engineering.

Quesada, I. and I. E. Grossmann, “An LP/NLP Based Branch and Bound Algorithm for
Convex MINLP Optimization Problems,” Computers and Chemical Engineering, 16, 937
(1992).

Ryoo, H. S. and N. V. Sahinidis, “Global Optimization of Nonconvex NLPs and MINLPs
with Applications in Process Design,” Computers chem. Engng, 19(5), 551 (1995).

Ryoo, H. S. and N. V. Sahinidis, “A Branch-and-Reduce Approach to Global Optimization,”
J. Global Optimization, 8, 107 (1996).

42

Schweiger, C. A., A. Rojnuckarin, and C. A. Floudas, MINOPT: a Software Pack-
age for Mized-Integer Nonlinear Optimization, User’s Guide, Computer-Aided Sys-
tems Laboratory, Dept. of Chemical Engineering, Princeton University, NJ (1997),
http://titan.princeton.edu/MINOPT /minopt.html.

Shectman, J. P. and N. V. Sahinidis, “A Finite Algorithm for Global Minimization of
Separable Concave Programs,” J. Global Optimization, 12, 1 (1998).

Smith, E. M. B. and C. C. Pantelides, “Global Optimisation of General Process Mod-
els,” Global Optimization in Engineering Design, Grossmann, I. E., ed., 355-386, Kluwer
Academic Publishers (1996).

Smith, E. M. B. and C. C. Pantelides, “Global Optimisation of Nonconvex MINLPs,”
Computers and Chemical Engineering, 21, S791 (1997).

Smith, E. M. B. and C. C. Pantelides, “A Symbolic Reformulation/Spatial Branch-and-
Bound Algorithm for the Global Optimisation of Nonconvex MINLPs,” Computers and
Chemical Engineering, 23, 457 (1999).

Vaidyanathan, R. and M. El-Halwagi, “Global Optimization of Nonconvex MINLP’s by
Interval Analysis,” Global Optimization in Engineering Design, Grossmann, 1. E., ed., 175—
193, Kluwer Academic Publishers (1996).

Visweswaran, V. and C. A. Floudas, “New Properties and Computational Improvement of
the GOP Algorithm for Problems with Quadratic Objective Function and Constraints,”
Journal of Global Optimization, 3(3), 439 (1993).

Visweswaran, V. and C. A. Floudas, “New Formulations and Branching Strategies for the
GOP Algorithm,” Global Optimization in Engineering Design, Grossmann, . E., ed., 75—
100, Kluwer Academic Publishers (1996a).

Visweswaran, V. and C. A. Floudas, “Computational Results for an Efficient Implementa-
tion of the GOP Algorithm and its Variants,” Global Optimization in Engineering Design,
Grossmann, I. E.; ed., 101-153, Kluwer Academic Publishers (1996b).

Westerberg, A. W. and G. Stephanopoulos, “Studies in Process Synthesis - [. Branch and
Bound Strategy with List Techniques for the Synthesis of Separation Schemes,” Chem Eng
Sci, 30, 963 (1975).

Westerlund, T. and F. Pettersson, “An Extended Cutting Plane Method for Solving Convex
MINLP Problems,” Computers chem. Engng, Suppl., 19, 131 (1995).

43

Westerlund, T., F. Pettersson, and I. E. Grossmann, “Optimization of Pump Configuration
Problems as a MINLP Probem,” Computers and Chemical Engineering, 18(9), 845 (1994).

Westerlund, T., H. Skrifvars, I. Harjunkoski, and R. Porn, “An Extended Cutting Plane
Method for a Class of Non-Convex MINLP Problems,” Computers and Chemical Engineer-
ing, 22(3), 357 (1998).

Yee, T. F. and 1. E. Grossmann, “Simultaneous Optimization Model for Heat Exchanger
Network Synthesis,” Chemical Engineering Optimization Models with GAMS, Grossmann,
I. E.,, ed., vol. 6 of CACHE Design Case Studies Series (1991).

Yuan, X., S. Zhang, L. Pibouleau, and D. S.,; “A Mixed-Integer Nonlinear-Programming
Method for Process Design,” RAIRO - Recherche Opérationnelle-Operations Research,
22(4), 331 (1988).

Zamora, J. M. and I. E. Grossmann, “A Global MINLP Optimization Algorithm for the
Synthesis of Heat Exchanger Networks with no Stream Splits,” Computers and Chemical
Engineering, 22(3), 367 (1998a).

Zamora, J. M. and I. E. Grossmann, “Continuous Global Optimization of Structured Pro-
cess Systems Models,” Computers and Chemical Engineering, 22(12), 1749 (1998b).

44

A Maximum separation distance for fractional terms

The underestimation of a fractional term z;/xs over the domain [z, zV] x [z, z¥] with
z¥ > 0 involves the introduction of a new variable wr and the linear constraints (Maranas

and Floudas, 1995)

L L
xr xr .
T — e >0
> 2 2
Wr =2 e wkm ko o
U~ zLiU + g lfl'l <0
2 2 %2 2 (22)
U U
xr x
—+a -4 ifaf >0
> 2
Wr =2 s U
ZL_ 3 ® T ifaU <0
zy aymy oz 1

In this appendix, the maximum separation distance d,,,, between x1/xs and wp is derived

for all cases in the underestimating scheme.

A.1 Case 1: zI >0

. L U . .
In this case, d,,.; = max [—"’1 — max{—1 + ZL — —U, Oz %Lt First, we determine
z1,72 L%2 z2 T3 :c2 T35

whether the solution to this problem lies on an edge of the rectangle [zF, Y] x [2%, 2¥]. Let

z; = z7. Then,

22 | X9 Ty To zk
But,
af _of af —wof | af —af _of —af
L>b o Tl et
i) i) Ty Ty i)

This is always true and so dy,q; = 0 for z; = zF. It can also be shown that d,.; = 0 for
1 = 2V or 2o = 2L or 2o = Y. Hence, the maximum separation distance does not occur
on one of the edges of the box [zl 2] x [2L, z¥].

The problem is now reformulated as a constrained NLP:

f

— min —Z +wp
T1,T2,WF z2
zlL T1 $1L
U 2 %] (23)
d = TLopom T
mazx T2 + $2L $2 Wr = <0
L
oy <ap < z¥
L U
ry < T2 < Tg

\

The Lagrange multipliers for the bound constraints are equal to zero because the solution

does not lie on an edge. The Lagrangian for problem (23) is given by

71 xt xt wf o o
——+’LUF+,U/1 +—U——U—U}F +,le2 +—L——L—U}F .

45

Given that o > 0, the KKT conditions are
1
- 4+ & + & = 0
— mrt — ppa! = 0

Il—pr—pe = 0

L L
& (962 zg of F)
U U
St S =0 28
12 (m L s wF> (28)
pi, 2 > 0 (29)

Eq. (26) is satisfied in one of the following three cases:
(i) ;1 =1 and py =0,

(ii) 1 =0and pp =1,

(i) O <y <land py=1— py.

If 4y = 1 and pp = 0, Eq. (25) yields z; = z} and the solution is on an edge. Similarly,
if 41 = 0 and py = 1, Eq. (25) yields z; = 2¥ and the solution is on an edge. Thus, we

U
must have 0 < pu; < 1 and ps = 1 — py. Substituting for us in Eq. (25), we find p; = zi
1
and therefore, o = ;g, ml . Using the expressions for the multipliers to solve the system of
equations, the values of ;1 and x5 at the optimum solution are
L U -1
_xy oy _ 1 1
Finally, the maximum separation distance for z¥ > 0 is given by
_ ot +4V (1 1
s =2 (51
A.2 Case 2: z¥ <0
In this case, dpezr = 1;121}2(2L — max {E — xg + p $2U + }} . First, we identify
the region of validity of each underestimator:
ﬂ_aﬁlL.Tg xl ﬂ—m[{@%—ﬁ@x >x§]—$2 +x?m§—xfxg
¥ zbal ozl T ozl zLal 74U 2= gl — gl o 2V — b

The limit between the two regions is the diagonal line joining the lower left corner and the
upper right corner of the box [z¥, Y] x [zX, 2¥]. Let Region 1 be the upper left of the
rectangle and Region 2 be the lower right, as shown in Figure 15. The maximum separation

distance for each of these two regions can now be determined.

46

A.2.1 Region 1

In this region, the maximum separation distance is given by

(

U L

—mi _$_1 ﬂ
min -+ m2 P

T1,T2

U

dmaw =4 (30)

x1§x1§x1

L U
L Ty <29 < 75

HYPOTHESIS 1: First, we postulate that one of the bound constraints is active. For z; = 2V,
or 1y = xk, or o = 2¥, the solution to problem (30) reduces to dy,q; = 0 which is clearly

not the optimum solution. For z; = zF, we have

L L L
—mi T Iy _ zf
T o s
Amaz = s.t. x% —29<0 (31)
Ty < 2

The multipliers for the bound constraints in (31) must be zero, and the KKT conditions

yield (27, 73) = (27, v/325) and

e 5 (V)

HyproTHESIS 2: We now assume that the bound constraints are inactive. The Lagrangian

is then
L L U_ L
T T T1 T2 Ty Ty — Ty L L
Lz, w0,) = —— + — — +—+pl (@1 —27) + x5 —22] .
) =, Yo T ol “(mif—xf(l R)
The KKT conditions are
11 ¥ — 2%
Ty 2Y um?—xf (33)
L
.’L‘l .’El
U_ L
Ty — &
u(H(ml—mf)—Fxﬁ—xg) - (35)
1 — Xy

=
v
o

(36)

If © =0, Eq. (33) gives o = x5, which contradicts the hypothesis. Hence y > 0. Solving
Egs. (33) and (35) simultaneously, two solutions are found for xo, 75 = +1/x 2§ . However,
only 23 = \/xk 2 satisfies 22 < 23 < z¥. The following solution is then found for z;

LU U ,.L U L L .U
Ty — Xy

47

Substituting =7 and =} into the definition of d,,,,, we find

2
el alalt o 2 oad) VO el
maxr —

zy —zy ayy (vy —af) (zf — 2Y) /2 \/a:QxQ

The two hypotheses give different expressions for the maximum separation distance. In order
to compare them, let 27 be defined by Eq. (37). Then,

Amaz (xf, \/ % :v2> > dimaz (wi‘, \/ % w?) (39)
L

2ry _wy wm mAry om 1y (40)
1 1
L *
S(z—-12))|——-—-] >0 (41)
(= 1)(xk ¥ ng)
sl -2 >0. (42)

Since by definition z% > x| the above condition is never met and d,,,, for Region 1 is always

greatest at (x*{, Vb asg) :

A.2.2 Region 2

In the domain of validity of the second underestimator, the maximum separation distance is

given by
(. T1 1 zgjzz 1
— nun _12 a:_L B xlal zV
T1,T2 2 23 3
U
z¥ —zL L
s.t. 22 +x9—xy <0
dmam = < oy —af () 2= (43)

ol <@ <af
ry < xy < af

\
This problem can be solved following the same approach as for Region 1. When the bound

constraints are active, there exists a solution at (z¥, \/z% z¥) and the maximum separation

e 5 ()

A comparison of this equation with Eq. (32) reveals that d,,q, at (2, /2L 2¥) is less than
Amaz at (27, /2L 2¥) and is, a fortiori, less than the value of d,,4; given by Eq. (38). When

the bound constraints are inactive, the KKT conditions for problem (43) require the solution

distance at this point is

to lie on the line separating Regions 1 and 2. The solution of problem (43) is therefore the
same as the solution of problem (30).

Thus, for ¥ < 0, d,4; is given by Eq. (38).

48

A.3 Case 3: zf <0 and 2 >0

; z1 z1 ziay zb 2V z1 z{ .
In this case, dee = |Mmax L —max % — F5 + =3, 22 + & — =L 4| | The first underesti-
z1,T2 L T3 Ty Ty Ty~ T2 Ty T3y
mator is valid if and only if
T, alwy 2t 2V oz AV
T LU .2t T T (45)
1 1 xk 2V ol 4+ 2V
1 1 1 1

Region 1 is defined as the region for which Eq. (46) holds.

A.3.1 Region 1

In this region, the maximum separation distance is given by

(. ;7T x
I1 T 1 L2 1
T1,T2 Z2 Ty Ty Ty Iy

L U L U
1 1 T x§ zi+af
s.t. (———)x + Tipre — 4+ 22 <0
of 2l)T 2l aTT2 T 3 (47)

dmaw = <

\

HyPOTHESIS 1: It is assumed that the solution lies on an edge of the box [z, zV] x [z], z

7]

e For r; =z, problem (47) becomes

L L L
—min =% 4% _ =% 5
T2 T2 :cg wZszU :cé’
L U L U
d = B ST T S (48)
max s.t. zg . + §x2U + Ty > 0

The bound constraints on 5 are inactive since d,,,o, = 0 at the corner points. If the multiplier

for the inequality constraint is zero, we must have zy = y/z z¥ and

xk / 7\
dmam = _37% le (xZU - 33%) . (49)

2

If it is nonzero, the KKT conditions reduce to a quadratic polynomial in o whose solutions
are 7% (i.e., dpar = 0) and zV2¥ /2l which is negative and therefore outside of the feasible
region.

e For z; = z¥, problem (47) becomes

U U L L

. xy] T{ T2 7

—min ——-+ & — 1775+ T

T2 z2 Zy Ty Ty)

U L L U

_ T T T T2 T

Omaz = st. —F—TJ+ 47 +-<0 (50)

x5 x5 Ty Ts T2

zh <my <2l

If the multiplier for the inequality constraint is zero, the KKT conditions reduce to z3 =
zha¥zY /xt. But the right hand side is negative and there is therefore no solution to this
problem. Similarly, if the multiplier is nonzero, the only feasible solution is at x5 = z¥ and
therefore d, ., = 0.

e For z, = z¥, problem (47) becomes

“min (o =at) (5 =)

Aoz = s.t. x1— ;1:52 <0 (51)
2

zf

ot <z <4V

The KK'T conditions require the multiplier for the inequality constraint to be non-zero. The
solution to the problem lies at z% = zFal /(] —2¥). Provided zF < 2% < 2V, the maximum

separation distance is then
L
dmaw =TI (52)

e For z, = z¥, problem (47) yields dyqz = 0.
HyproOTHESIS 2: It is now assumed that the solution does not lie on one of the edges of the
box. The KKT conditions for the problem are then

1+1+(1 1)—0 (53)

L L U
~1 e S = 0 54
*"() (54)

1 zt oy at 4+ 4¥
— - + e L 55
po> 0 (56)

There is no solution to this system of equations for g4 = 0. The solution must therefore lie on
the limit between Regions 1 and 2. Finding the optimum solution involves solving a cubic

equation and this step is left until KKT conditions for Region 2 are obtained.

A.3.2 Region 2

In this region, the maximum separation distance is given by

—min (o¥ —21) (£ - &)

Z1,T2

1) gy — of _ zitaf
dmam =X (zg 2L> zy x 2 Z2 zy <0 (57)
1 <

HyproTHESIS 1: By forcing one of the bound constraints to be active, it is found that, for
z1 = ¥, there is no solution and for z; = z¥ or zy = 2L or 25 = 2¥, d,0e = 0.
HypoTHESIS 2: If none of the bound constraints are active, the KKT conditions for the

problem are

! + L + L L = 0 (58)
Ty Tk H oy xk)
U U L
1 1 L 7Y xf+x§]>
pll -] ———=220+—+—5—] = 0 (60)
((fﬂg x%) yay Ty 5
po> 0 (61)

Once again, there is no solution to this problem for ;4 = 0 and the solution must lie on the
border between the two regions. By definition, the two underestimators match at this border
and therefore

i zyey 1 l («f + i)z
N="v Lo T U L¥2T T U L (62)

The maximum separation distance d,,,, is then expressed as

2Vl 32Vl xtzy 20V2y — 2Vl + 2Ll — xL2l
max 11923 1% 1 1%3 1723 175 123

U 2 U _ L U _ L U _ I L :

eh<er<ay \ (z5 —wg)xs (2] —25)12 T — 75 (x5 — x5)x5
(63)
The maximum occurs at
2 2
As — 54sglalxly

54%:1;11‘14%

with A = 54ztalalay (m1 + /2l 4 alaUglal) For certain values of the variable bounds
the argument of the square root may be negative. HYPOTHESIS 2 can only hold if the value
given by Eq. (64) is real and in [zZ, 2¥]. If this is true, then the maximum separation distance

under HYPOTHESIS 2 is given by

2 1
d o 54%1 zy 1‘2 A o 14583x1 22y
mar — U v\ U A3 U, L. U
($2 —mz)(A3 _543 2L Lyl mzxz) (z2 f;cz)(3 543w1x1w2w2) (65)
A3 54327 m?m%mg 20Y oY —zValtalal —alal
543 (2§ 2k)2k A3 (af —af)k

Summarizing the results for Case 3, the maximum separation distance is given by the
maximum of Egs. (52) and (65).

o1

B Formulations for the trim loss minimization prob-

lems

The complete formulation for every instance of the trim loss minimization example is given
in this appendix. Problems 1 and 2 have four products, Problem 3 has five and Problem 4

has six.

B.1 Problem 1

min my; + my + mg + my + 0.1y, + 0.2y5 + 0.3y5 + 0.4y,

™ Y5l
s.t. mir11 + Morio + mgrig + myryy > 15
MaT91 + MaTog + MaTez + MyTey 2> 28
M3T31 + MaT3g + M3rs3 + Myr3s > 21
MyT41 + MoTyo + M3ras + Myray > 30
1750y < 290711 + 315791 + 350731 + 455741 < 1850y,
1750y, < 290719 + 315799 + 350735 + 455749 < 18505
1750y3 < 290713 + 315793 + 350733 + 455743 < 1850y3
1750y4 < 290714 + 315794 + 350734 + 455744 < 1850y,
y1 <1 tror+ s+ <0y
Yo < T2+ Too+ 132+ 142 <O Yo
Ys S i3+ T3 + 733+ 713 < O Y3
Yo ST+ 124 + 734+ 744 <O Y
y1 < my < 30y
Yo < ma < 30y,
ys < m3 < 30y3

ya < my < 30y,

my + mg +ms +my > 19

Y12 Y2 2 Ys > Ya

my > Mg 2> M3 2> My

(y1, Y2, Y3, ya) € {0, 1}*

(m1, ma, m3, myg) € [0,30]* N N*

r €10,5]NN, i=1,...,4,j=1,... 4.

92

B.2 Problem 2

min my + Mo +m3 + my + 01y1 + 023/2 + 03y3 + 04y4

™ YT
s.t. myri + merig +maris + muris > 9
MaT21 + MaTog + M3Teg + MyTey 2> 7
mars1 + MaTse + Marsg + Mmyrgy > 12
MyT41 + MaTag + Marag + Myrag > 11
1700y, < 330711 + 3607y, + 385r3; + 41574, < 1900y,
1700y, < 330719 4+ 360799 + 385739 + 415749 < 1900y,
1700y3 < 330713 + 360723 + 385733 + 415743 < 1900y3
1700y, < 330714 + 360794 + 3857134 + 415744 < 1900y,
Y1 Sri+ o+ 73+ <05y
Yo S T12+ T2 + 732+ T2 < O Yo
Y3 <7113+ 713 + 733+ 7143 <D Y3
Yo STr1a+ 720 + 730+ 724 <5 Ys
y1 <my < 15y
Y2 < mg < 12y
ys < mz < Yy
Ya < my < 6yy
my + mg + mg + myg > 8
Y1 2 Y2 2 Y3 > Ya
my > Mg 2> M3 > My
(y1, Y2, y3, ya) € {0, 1}
(my, mg, m3,my) € [0,15] x [0,12] x [0,9] x [0,6] N N*
rij €0,5]NN, i=1,...,4,57=1,...,4.

93

B.3 Problem 3

min mi + Mo + M3 + My + M5 + 01y1 + 023/2 + 03y3 + 04y4 + 05y5

™;Yirij
S.t. miriy + morie + mariz + myriy + msrs > 12
M1T21 + MaTeg + M3Te3 + MyTag + Ms5res 2> 6
m1T31 + MaT3e + M3rs3 + MyT3g + Msrss > 15
MiTa + MaTag + M3rag + MaTag + MsTa5 > 6
M1Ts1 + MaTse + M3Ts3 + MyTsy + Msrss > 9
1800y, < 330711 + 36079, + 370r3; + 41574 + 435751 < 200074
1800y, < 330719 + 360795 + 3707139 + 415749 + 435750 < 2000y-
1800y3 < 330713 + 360793 + 370733 + 415743 + 4357153 < 2000y3
1800y, < 330714 + 360794 + 370734 + 415744 + 435754 < 2000y,
1800ys < 330715 + 360795 + 370735 + 415745 + 435755 < 2000ys5
y1 STt ror+rsntra+rs <5y
Yo S T2+ Too + T2+ Ta2 + 752 < O Yo
Ys <113+ To3 + 733 + a3 + 753 < O Y3
Yo ST1a+ 720+ 734+ Tag + 750 <5 Ya
Ys S T15+To5 + T35 + Ta5 + 755 < O Ys
y1 < my < 1dy
y2 < mg < 12y
ys < mg < Yy3
Ys < my < 6yy
Ys < my < 6ys
my + mg + ms + myg +ms > 10
Y12 Y22 Ys > Ys 2 Ys
miy 2 Mg 2> M3 > My 2> Ms
(Y1, Y2, Y3, Y, y5) € {0,1}°
(my,my, m3, myg, ms) € [0,15] x [0,12] x [0,9] x [0, 6] x [0,6] N N°
ri; €10,5]NN, i=1,...,5,j=1,... 5.

o4

B.4 Problem 4

s.t.

min mi + Mg + M3 + My + M5 + Mg
mgj,YjsTij

+ 0.1y; + 0.2y5 + 0.3y5 + 0.4y, + 0.5y5 + 0.6ys
miT11 + MaT1e + M3r13 + MyT14 + Msris + Merie > 8
M1T21 + MaToe + M3Te3 + MyT2s + MsTes + MeTae > 16
MiT31 + MaT32 + M3Ts3 + MaT3e + M5T35 + MeTze > 12
M1Ta1 + MaTag + M3Tay + MaTag + MsTa5 + MeTas > 7
MAT51 + MaTse + M3Ts3 + MaTss + MsTs5 + MgTsg > 14
MTg1 + MaTea + M3Te3 + MaTga + MsTgs + MeTeg > 16
2100y; < 330711 + 36079; + 38073, + 43074, + 490751 4+ 530761 < 2200y,
2100ys < 330719 4 360799 + 380739 + 430740 + 490752 + 530762 < 2200y,
2100y3 < 330713 + 360793 + 380733 + 430743 + 490753 + 530763 < 2200y3
2100y, < 330714 + 360794 + 380734 + 430744 + 490754 4 530764 < 2200y,
2100ys < 330715 4 360795 + 380735 + 430745 + 490755 + 530765 < 2200y5
2100ys < 330716 4 360796 + 380736 + 430746 + 490756 + 530766 < 2200y4
y1 <+ ror + 13t ra s+ e <5 Y
Y2 ST+ Too + 732+ Ta2 + T2 + T2 < 5 Yo
Ys <113+ T3+ 733+ a3+ 153+ 763 <D Y3
Yo ST1a+Toa + 734+ 724+ 750+ 764 <5 Ya
Ys S 715+ To5 + T35 + Tas + 55 + 765 <D Ys
Yo < 716+ T26 + 736 + Ta6 + 756 + Te6 < D Ys
y1 < my < 15y,
Y2 < mg < 12y
ys < my < 8y
Ys < my < TYy
ys < ms < 4ys
Ye < mg < 2Ys
my + mg + ms + my + ms + mg > 16
Y1 2Y2 2 Ys 2 Ys 2 Ys 2> Yo
miy 2> Mg 2 M3 2> My 2> My > Mg
(Y1, Y2, Y3, Ya, Y5, Ys) € {0,1}°
(my, ma, m3, my, ms, mg) € [0,15] x [0,12] x [0,8] x [0,7] x [0,4] x [0,2] N N
ri €0,5]NN, i=1,...,6,j=1,... 6.

%)

0 2 4
2 P \0‘ 1 2 4
—_— ‘ : |
SN .
infeasible + /] ; Y x € [04]
3 ";1\ ' 2
e xe [24] —— xe [14]
» »
infeasible xe [3.4] infeasible 2_3 4
)/ \
34 xce4
=

infeasible x¢ [3,4]

—— Range tested for feasibility using interval arithmetic
—» Rangeisinterval feasible

---» Rangeisinterval infeasible

Figure 1: Interval bound update procedure for the lower bound for 0 < z < 4. The minimum

range width for testing is 1.

ST?RT
/Parseinput file/

Vaiale YES! \Interval bound updaiei
<Dbound updates reqwr ed>—— _
y user 2 ConveX|f?/ aProbIem
(a caculation)

NO__ [Solve min/max x

Select branching variabl sit. convexified const.

(binary or continuous) convexified obj.< '

l variable bounds
Create new nodes
NO in Branch and Bound tree

|
[Convexify problem(a calculation)|

[Solve new Tower bounding problems$

\ Solve upper bounding problems\

UBD = smallest upper bound
LBD = smallest lower bound

<UBD -LBD <¢?

Figure 2: Flowchart for the SMIN-aBB algorithm

96

[5.6,10]

Figure 3: SMIN-aBB branch-and-bound tree. Boldface numbers indicate the order in which
the nodes were explored. The lower bound and branching variable are indicated inside each
node. The range to which this branching variable is restricted is displayed along each branch.
Note that the bounds shown are based on the results of the bound tightening procedure. A
black node indicates the lower bounding problem was found infeasible and a shaded node is

fathomed because its lower bound is greater than the current upper bound on the solution.

o7

| Stage 1 ! Stage 2 |
1 | I C1
| . | e HI*+ I
o @ O e
jziﬁ (Y™ i h i
ThE e 1

o B

Figure 5: Optimum configuration for the heat exchanger network problem.

1.0
—-—2z=(001)
---------- z=(011)
— z=(10,))
——-2z=(110
— z=(11])
a 0.5
0.0
0 10 20 30 40
Iterations

Figure 6: Progress of p, the relative quality of the lower bound, for five continuous relaxations.

o8

»|Runone a BB/ SMIN-a BB iteration
Set f| = solution of lower bounding problem

[iter=iter+1
A

NO
NO fL> 2
YES

mprovement rate
fast enough

itef e Maximum number of a BB iterations
fr best lower bound on original problem

%

f best upper bound on original problem

NO

Return f|_
l

Figure 7: Generation of a lower bound on a nonconvex MINLP at a non-terminal node, using
Strategy 2.

Interval bound updates

Variable
bound updates required
by user ?

YES Relax integer variables

Convexify problem

(a caculation)
‘ Select integer br%nchl ng variable %; Solve min/max y
sit. convexified constraints
* convexified obj. < f
Xexsx y<ysy
NO
Current node ~YES 7R:e|76>7(I,m,ege,r Ya,nj*il &
MINLP 2 Run aBB to get lower
bound on node
NOJ

Run aBB to completion
Solution = lower and
upper bound for node

T

'= smallest upper bound <—‘
1= smal

smallest lower bound

YES
STOP

Get upper bound on node:
Test integer feasibility

Figure 8: Flowchart for the GMIN-aBB algorithm

99

Figure 9: GMIN-aBB branch-and-bound tree

Figure 10: Superstructure for the pump network synthesis problem

>/\ -
3![:U: }E
:f\ Lo
-/

Figure 11: Global optimal configuration for pump network synthesis problem

60

Figure 12: Number of aBB iterations per GMIN-aBB node for two values of m.

Figure 13: BB runs with less than one hundred iterations for two values of m (close-up of

Figure 12).

o BB iterations

o BB iterations

400

300

200 -

100

*

5

* *
eohoRie oA

* ¥

*
* *

o
x O & £

* X owow ¥
Qy& * o
i*:’me &%J**m*%k‘ X, Wk ok s

0
0

50 100
GMIN-aBB nodes

150

100

50

*

R

* ok

* ;&**m * ko K *
* o
o PR N

GMIN-aBB nodes

61

1 A
2 2 by 1
. e |1,
by
1
2 2
1 max
3 3 1 3
-
2 A
; S
Pattern1 | Patternl i Pattern 2 : Pattern 3
[1 Trimloss

Figure 14: Trim loss minimization problem.

g

2

(D

X

L
X1

Figure 15: Two regions for Case 2, z¥ < 0.

62

PROCEDURE interval-based continuous variable bound update()
Set initial bounds L =z} and U =1zV;
Set iteration counter k£ =0, maximum iteration number K ;
D0 k< K
Compute midpoint M = (U + L)/2;
Set left region {(x,y): (x,y) € F,z; € [L, M]};
Set right region {(z,y): (z,y) € F,z; € [M,U]};
Test interval feasibility of left (right) region;
IF feasible, set U=M (L=M);
ELSE, test interval feasibility of right (left) region;
IF feasible, set L=M (U= M);
ELSE, set L=U (U=1L) and U=2Y (L=2zD);
IF k=0 and L = xfj U= xiL) , RETURN(infeasible node);
Set k=k+1;
0D;
RETURN(zf =L (¥ =0U));

END interval-based continuous variable bound update;

Table 1: Interval-based bound update procedure for continuous variables. F, the feasible
region for the bound update problem at the current node, and is defined as (z,vy) : f(x) +
e Apy + iy < gi(x) + e"Agiy+ciy < 0, i=1,... ,mhi(x) + & Apy + ¢y =
0, i=1,...,p;(bx,y) € [z, V] x [y, yY]}.

Run Number of Update Iterations CPU sec Deepest Binary

updated T's Frequency level branches

la* 8 1 1000 2091 60 —

1b 8 655 644 38 317
1lc 8 1 447 844 23 135
1d 8 1 445 812 28 158
2b 8 1 550 491 34 198
2c 8 1 302 538 19 103
2d 8 1 436 596 23 133
3b 8 1 441 521 19 72

3c 8 1 287 644 28 93

63

3d 8 1 336 998 23 118
4b 8 1 62 1370 10 %)
4c 8 1 81 1428 15 93
4d 8 1 81 1847 11 95
5b 8 2 83 868 13 66
5b 8 3 100 545 14 70
5b 8 4 113 663 16 90
ac 8 2 105 1245 16 95
ac 8 3 122 924 18 o7
ac 8 4 225 1177 15 81
od 8 2 65 623 12 42
5d 8 3 147 1044 13 75
5d 8 4 162 965 18 92
6b 6 3 148 932 16 81
6b 4 3 180 315 20 88
6b 2 3 443 376 21 208
6c 6 3 212 848 19 89
6c 4 3 263 626 16 89
6c 2 3 436 766 22 108
6d 6 3 222 802 17 109
6d 4 3 332 806 22 119
6d 2 3 618 715 29 123

Table 6: Heat exchanger network synthesis results for
different branching and variable bound update strategies.

* Run 1a has not converged after 1000 iterations.

64

SMIN-aBB GMIN-aBB

Example | Iter. CPUs. TIter CPU s.

1 4 0.4 root

2 9 0.5 2 0.1

3 —

3* root, 0.3 4 0.1

4 — — 18 4.7

4* 8 1.3 10 3

5 — 4 0.9

5* 2 0.5 6 2.2

6 — root 0.7

6* 4 0.5 root 0.7

Table 2: Comparative results for small literature problems. * denotes the reformulated

problem.

Stream Ty, (K) Tou (K) Fep (kW/K)
Hot 1 650 370 10.0
Hot 2 990 370 20.0
Cold 1 410 650 15.0
Cold 2 350 500 13.0
Steam 680 680 —
Water 300 320 —

Table 3: Stream data for heat exchanger network problem of Section 4.2.1.

65

Label Strategy
Continuous variables Binary variables
Number Method Obj. fun. Freq. | Number Method Obj. fun. Freq.
cut cut
1 8 Opt No 1 0 - - -
2 8 Opt No 1 12 Int No 1
3 8 Opt No 1 12 Opt No 1
4 8 Opt Yes 1 12 Int No 1
5 8 Opt Yes 2/3/4 12 Int No 1
6 2/4/6 Opt Yes 3 12 Int No 1

Table 4: Labeling for variable bound updates options for the first heat exchanger network

synthesis problem

Label Strategy

a Continuous variables (temperatures) only
b Sequential branching

¢ Hybrid branching with zdist = 0.1

d Hybrid branching with zdist = 0.2

Table 5: Labeling for branching strategies in the first heat exchanger network synthesis

problem.

Stream Tj, (K) Ty (K) Fep (kW/K)

H1 443 333 30
H2 423 303 15
C1 293 408 20
C2 353 413 40
Steam 450 450 —
Water 293 313 —

Table 7: Stream data for Example 1 of Section 4.2.2.

66

Branching Bound update Number of CPU time
strategy strategy iterations (seconds)
Sequential and No bound 465 250.6
variable measure updates

Continuous only No bound 69 82.8
with variable measure updates

Continuous only No bound 7 98.2
with term measure updates

Continuous only First 35 109.3
with variable measure iteration

Continuous only Every 21 800.5
with variable measure iteration

Table 8: Results for Example 1 of Section 4.2.2.

Stream Ty, (°C) Ty (°C) Fep (kW/°C) h (kW/(m? °C))

H1 159 7 2.285 0.10

H2 267 80 0.204 0.04

H3 343 90 0.538 0.50

Cl1 26 127 0.933 0.01

C2 118 265 1.961 0.50
Steam 300 300 — 0.05
Water 20 60 — 0.20

Table 9: Stream data for Example 2 of Section 4.2.2.

67

Branching Bound update Number of CPU time

strategy strategy iterations (seconds)
Sequential and No bound 1699 2191.2
variable measure updates

Continuous only No bound 65 577.6
with variable measure updates

Continuous only No bound 1034 14818.3
with term measure updates

Continuous only First 39 893.5
with variable measure iteration

Continuous only Every 31 1110.8
with variable measure iteration

Table 10: Results for Example 2 of Section 4.2.2.

68

PROCEDURE interval-based integer variable bound update ()
Set initial bounds L =y} and U =y/;
Set iteration counter £ =0 and maximum iteration number K ;
DO k<K and L#U
Compute integer ‘midpoint’ M = |(U + L)/2];
Set left region {(x,y): (x,y) € F,y; € [L, M]};
Set right region {(z,y): (x,y) € F,y; € [M +1,U|};
Test interval feasibility of left (right) region;
IF feasible, set U=M (L= M);
ELSE, test interval feasibility of right (left) region;
IF feasible, set L=M (U =M);
ELSE,
IF k=0, RETURN(infeasible node);
ELSE, set L=U (U=1L) and U=yY (L=1yh);
Set k=k+1;
0D;
RETURN (yF = L (yY =U));
END interval-based bound update;

Table 11: Interval-based integer variable bound update procedure. F is the feasible region
defined by {(z,y) : f(z,y) < [;9(x,y) <0 h(z,y) = 0;(z,y) € [z",2"] x [y",y"]}.

69

Pump1l Pump?2 Pump3
Fixed cost (FIM) 38,900 15,300 20,100
C; (FIM) 6,329.03 2,489.31 3,270.27

Cit (FIM/kW) 1,800 1,800 1,800
o 19.9 1.21 6.52

5; 0.161 0.0644 0.102

~v; -0.000561 -0.000564 -0.000232

a; 629.0 215.0 361.0

by 0.696 2.95 0.530

¢ -0.0116 -0.115 -0.00946

pres (kW) 80 25 35

Viet = 350 m3/h AP,y = 400 kPa wpee = 2950 rpm

Table 12: Data for the pump network synthesis problem.

Run Maximum Branching Bound upd. GMIN-aBB
number «BB iterations nodes CPU seconds

1 2 Most frac. No 625 2153
2 10 Most frac. No 503 3029
3 20 Most frac. No 453 4650
4 100 Most frac. No 275 11280
5 2 Priority No 621 1835
6 10 Priority No 455 2965
7 20 Priority No 421 3702
8 100 Priority No 342 9646
9 2 Priority Yes 143 670

10 10 Priority Yes 121 781

11 20 Priority Yes 129 738

12 100 Priority Yes 101 2537

Table 13: Results for the pump network synthesis problem varying the maximum number of

aBB iterations, the branching and bound update strategies

70

GMIN-aBB aBB iterations

m T nodes CPU seconds Average Maximum Total
1 0.05 135 354 2.6 14 356

1 041 135 351 4.3 14 584

1 0.3 135 400 8.6 395 1163
3 0.1 115 324 3.8 12 435

3 03 121 376 8.6 290 1037
7 0.1 127 428 11.9 343 1514
7 0.3 109 383 17.7 268 1929
15 0.1 121 417 22.8 63 2763
15 0.3 111 424 254 283 2821

Table 14: Results for the pump network synthesis problem using automatic stopping criteria

for the BB runs, prioritized variable branching and optimization-based bound updates.

71

>
+~
=
S o o o o 0
B = 2 2 x =
o oo o o o o
+~
<
[l
—
—
o O O o o o
- - c o o o <o
o O O ol o o © o O o o o o
c o o o o
— o Mm —H O O o o o O O o o o
~ c o o o o
O O OO0 O o © o O O o o o
o o o o o
— N O N - N o O N - N O
b B e B e B |
— | T — /I N o o o
N ___
\\|} N TN
g — n N oD o o ol oo o o|lw~o o o o
N~——— |~ 1 N —
— —|—
> — - H O+ O O Ol O O 0 ol 4 0O o o ©
— N — N— N -
£ g
.-
QO . . .
O © o 6 o 0
—_ g — — —
= =
O w
— [a] [yp] <
5}) 5)
— — — —
e < el <
=} o =} o
— — — —
A A A A

Table 15: Optimal solutions for four instances of the trim loss problem.

72

Strategy

GMIN-aBB nodes

CPU seconds

Mean Std. dev. Mean Std. dev.
a 545 289 239 81
Problem 1 b 89 22 62 14
c 95 30 60 18
a 949 207 314 94
Problem 2 85 38 48 16
c 105 37 55 19
a 171 79 226 35
Problem 3 b 27 6 25 4
c 37 6 28 4
a 343 165 570 143
Problem 4 b 22 8 33 8
¢ 44 11 54 12

Table 16: Results for the trim loss minimization problems for three strategies: (a) prioritized

branching, no bound updates, iter,,, = 100 (b) prioritized branching, optimization-based

bound updates, iter,.; = 100 (c) prioritized branching, optimization-based bound updates

and automatic BB run termination.

SMIN-aBB algorithm

GMIN-aBB algorithm

Problem Original Reformulation Original Reformulation
hline CPU sec CPU sec Nodes CPU sec Nodes CPU sec
HEN-Chen 315 — — 617 — —
HEN-AM1 83 — — 1699 — —
HEN-AM2 578 — — 18120 — —
Pump network — 6304 147 927 147 1031
Trimloss 1 — 256 95 60 6307 6383
Trimloss 2 — 22840 85 48 217 302
Trimloss 3 — 1027 27 25 2929 10269
Trimloss 4 — fail* 22 33 1275 427

Table 17: Comparative results for different formulations and algorithms. * The run did not

terminate due to the failure of the MILP solver used for the lower bounding problem.

73

