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Abstract—The reactor network synthesis problem involves determining the type, size, and
interconnections of the reactor units, optimal concentration and temperature profiles, and
the heat load requirements of the process. A general framework is presented for the syn-
thesis of optimal chemical reactor networks via an optimization approach. The possible
design alternatives are represented via a process superstructure which includes continuous
stirred tank reactors and cross flow reactors along with mixers and splitters that connect
the units. The superstructure is mathematically modeled using differential and algebraic
constraints and the resulting problem is formulated as an optimal control problem. The so-
lution methodology for addressing the optimal control formulation involves the application
of a control parameterization approach where the selected control variables are discretized in
terms of time invariant parameters. The dynamic system is decoupled from the optimization
and solved as a function of the time invariant parameters. The algorithmic framework is
implemented in the optimization package MINOPT which is used as a tool for solving the
reactor network synthesis problem. The proposed approach is applicable to general prob-
lem formulations and its utility is illustrated through the application to numerous examples
including both constant and variable density problems, isothermal and nonisothermal op-
eration, as well as complex reaction mechanisms with the kinetic and thermodynamic data
provided by Chemkin.

1 Introduction

The overall process synthesis problem deals with determining the entire process flowsheet
which converts the given raw materials into the desired products. It includes aspects of the
process such as reaction, separation, recycle, and energy integration. Rigorous mathematical
approaches to process synthesis are capable of determining the interactions among the various
parts of the process as discussed in Floudas!. Many of the process synthesis approaches have
addressed process subsystems such as heat exchanger networks, separation systems, and
reactor network synthesis. The reaction step is often the heart of a chemical process and
the foundation for the process design. The reaction chemistry determines the character of
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the entire process and has a significant impact on the design of the overall process. Although
only part of the overall synthesis problem, a carefully designed reactor network is crucial to
the design of the entire process.

An extensive review of reactor network synthesis approaches can be found in Hildebrandt
and Biegler?. The focus of the previous work has been on manipulating flow patterns and
mixing patterns within the reactors. The Plug Flow Reactor (PFR) and the Continuous
Stirred Tank Reactor (CSTR) have long been recognized as two extreme ideal cases where
the PFR models no mixing and the CSTR models perfect mixing. Different approaches
have been proposed to develop models which capture the mixing aspects between these two
extremes. Other methods have been proposed which incorporate the different reactor models
into reactor network synthesis problem.

Some of the early work in reactor optimization focused on analyzing the effects of different
mixing models. In the work of Dyson and Horn®, a tubular reactor is designed for an
exothermic reaction where the temperature is controlled by distributing the cold feed along
the reactor. In the work of Horn and Tsai?, the effects of local and global mixing were
investigated on tubular reactors involving recycle or bypass streams. The problem is solved
as an optimal control problem using adjoint methods. One of the earliest works which
addressed the idea of a reactor network was that of Jackson®. A network of parallel plug
flow reactors interconnected with sidestreams was postulated. The model involved source
points and sink points along the tubular reactors to allow for manipulation of the mixing
pattern. This work was extended to include local mixing by Ravimohan® by incorporating
CSTRs into the network along with a discrete decision. An axial dispersion model was
developed by Paynter and Haskins” which avoids the discrete decisions on the reactor types.
The problem was formulated as an optimal control problem where the decision variable was
the dispersion coefficient. The value of the dispersion coefficient could vary continuously
from one limit (CSTR) to the other (PFR). The ideas of Jackson® were further extended
by Achenie and Biegler® by using an axial dispersion reactor instead of the PFR as the
fundamental unit in the network. The model allowed for series and parallel combinations
and allowed for more general situations than those where only PFRs are considered. The
problem was formulated as an optimal control problem and solved by coupling the solution
of a two point boundary value problem with a successive quadratic programming approach.
The work of Achenie and Biegler® continued along the same lines by using a recycle reactor
unit as the fundamental unit in the network superstructure. This simplified the problem and
reduced the computational effort, but the model was less general.

A reactor network superstructure which included CSTRs and PFRs with various inter-
connections was formulated by Kokossis and Floudas!%!!2, In the problem formulation,
the PFRs were approximated by a series of equal sized sub-CSTRs to eliminate the differ-
ential equations, and integer variables were used to represent the existence of reactor units.
This resulted in a large-scale MINLP formulation that was solved using Generalized Benders
Decomposition along with an initialization strategy. The approach was capable of handling
arbitrary kinetics for both isothermal and nonisothermal situations. Stability constraints
were incorporated in to the synthesis problem to avoid the selection of unstable networks!3.
The approach allowed for general network configurations, but led to large, complex, noncon-
vex MINLP formulations that exhibit multiple local solutions.

The key advantage of the superstructure-based approaches is that they can determine



simultaneously the objective value and the explicit optimal reactor network configuration and
operating conditions. One of the limitations of the superstructure based approaches is that
the optimal solution is only as rich as the initial superstructure. The true optimal reactor
network can not be found if it is not contained within the superstructure. However, increasing
the richness of the superstructure comes at the cost of increasing the size and complexity
of the model. In addition, the model formulations for these problems are nonlinear and
nonconvex and the solution procedures relied on local optimization.

In order to address the limitations involved with the superstructure based approaches,
a performance index free of the limitations imposed by the reactor types and configuration
was deemed necessary. These methods were proposed to determine a target or bound on the
performance index of the reactor network regardless of the reactor types and configuration.
These methods expanded on the early work of Horn!'* which defined the attainable region
as the set of all possible conditions that can be achieved through reaction and mixing. In
the work of Glasser et al.'®, the geometric properties of the attainable region were devel-
oped along with a geometric approach for defining the attainable region in the space of the
variables needed to define the objective function. The attainable region concepts were fur-
ther developed by Hildebrandt et al.'® where the properties were applied to systems with
nonconstant densities and heat capacities. In Hildebrandt and Glasser!'” the concepts were
extended to three dimensional examples. These targeting methods were shown to be power-
ful in terms of the information they provided, but they relied on geometric techniques that
were difficult to apply to higher dimensions.

In the work of Achenie and Biegler'®, a target was developed based on the residence time
distribution function (RTD). Both macro and micro mixing concepts were incorporated by
considering maximum mixed and segregated environments. The problem was formulated as
a nonlinear program which avoided the dimensionality problems of geometric or graphical ap-
proaches. Since the reactor network was not automatically determined, the reactor network
suggested by the RTD was developed after the RTD was determined. This approach was
further developed by Balakrishna and Biegler!%2% where feasible regions for the optimization
were successively generated in an iterative procedure. Two approaches were proposed for
expanding the feasible region: a constructive approach where convex regions were extended
recursively and a multi-compartment approach where additional compartments are added
at each stage. This constructive approach ensured that only the simplest model required
was solved. The solutions were given in terms of the RTD and the reactor network was not
directly determined. With the targeting approach now posed as an optimization problem,
various approaches were described in Balakrishna and Biegler?'. Applications to isothermal
and nonisothermal systems, energy integration, and simultaneous reaction, separation, and
energy systems were considered. The work of Lakshmanan and Biegler?? combined the ideas
of the targeting approaches with the superstructure approaches. Reactor modules consisting
of CSTRs and Differential Sidestream Reactors (DSRs) were considered as the fundamental
building blocks of the superstructure. The properties of the attainable region were applied
to ensure that a sufficiently rich superstructure is proposed. The resulting model was an
MINLP which was solved sequentially in a constructive manner to ensure that simple models
were solved and that simple networks were determined.

Recently, an important set of the fundamental properties of the attainable region which
can be used as guidelines in the design of reactor systems were presented in Feinberg and



Hildebrandt?3. Several key properties of the attainable region were outlined and the effect
that reactor types have on the shape of the attainable region was described. The extreme
points of the attainable region were shown to be accessible by simple combinations of ele-
mentary reactor types. The analysis showed that PFR trajectories access almost all of the
attainable region while the CSTRs and sidestream reactors connect the PFR sections of the
attainable region.

This work focuses on addressing two disadvantages of the superstructure based approach:
the large, complex formulations and the approximation to the PFR. By modeling the PFR
with differential and algebraic equations and incorporating differential sidestreams to achieve
Maximum Mixed and Segregated Flow reactors, a simpler model which preserves the richness
of the MINLP formulation is generated. Another issue addressed in the development of
this synthesis approach is that the proposed method must be capable of being directly
incorporated into a full process synthesis approach.

In Section 2 the reactor network synthesis problem is defined and the optimization ap-
proach to solving this synthesis problem is described. The process superstructure is given
and the mathematical models which describe the superstructure are given. In Section 3 the
problem is formulated as an optimal control problem and a solution algorithm is proposed.
In Section 4 the algorithmic framework is described and in Section 5 extensive computa-
tional studies that illustrate the features of the proposed approach are presented along with
comparisons to other approaches.

2 Reactor Network Synthesis

In reactor network synthesis, the goal is to determine the reactor network that transforms
the given raw materials into the desired products. The following information is assumed to
be given in the problem definition:

e the reaction mechanism
e the kinetic data
e the enthalpic data
e the inlet stream(s) data
e the performance objective (output).
The synthesis problem is to determine:
e the type, size, and interconnection of reactor units
e the stream flowrates, compositions, and temperatures
e the composition and temperature profiles

e the heating and cooling requirements



Figure 1: Conceptual Reactor Network Superstructure.

The optimization approach to process synthesis is applied to the reactor synthesis prob-
lem. This approach involves three steps: (i) the representation of process design alternatives
of interest through a process superstructure, (ii) the mathematical modeling of the super-
structure, and (iii) the development of a solution procedure to extract the optimal process
flowsheet from the superstructure. The key feature of this approach is the postulation of a
superstructure which contains all possible structural alternatives. The superstructure must
be sufficiently rich to contain all possible network configurations, as well as simple enough to
eliminate redundancies and reduce complexity. A well-developed superstructure facilitates
in the modeling and solution of the process synthesis problem.

2.1 Reactor Network Superstructure

The superstructure, as described by Floudas?, is developed based on elementary graph theory
ideas. The general superstructure includes nodes to represent the units, inputs, and outputs
of the process and arcs to represent the flow of material between the nodes. One-way arcs
represent connections from the inputs to the units and from the units to the outputs while
two-way arcs represent interconnections between process units. The result is a bipartite
planar graph which represents all of the options of the superstructure. A conceptual reactor
network superstructure is shown in Figure 1 where the the nodes correspond to the reactors,
mixers, and splitters.

One of the key issues in the superstructure based approach for reactor network syn-
thesis is determining which reactors should be in the superstructure. The richness of the
superstructure is determined by the variety and number of reactor units included and the
interconnections among them. However, too many reactors and reactor types can unneces-
sarily complicate the superstructure and give rise to redundancies. The work of Feinberg and
Hildebrandt?? showed that the only reactor types required to access all possible compositions
for a given reaction mechanism are the fundamental reactor types of the PFR, CSTR, and
differential sidestream reactors. Thus, the design of a reactor network is more a question
of how to incorporate the traditional reactors and less of a speculation about alternative
devices.

For the reason above, the following different types of reactor units are considered:

e Continuous Stirred Tank Reactor (CSTR)
e Plug Flow Reactor (PFR)



e Maximum Mixed Reactor (MMR)
e Segregated Flow Reactor (SFR)
e Cross Flow Reactor (CFR)

The CSTR is assumed to be perfectly mixed such that there are no spatial variations in
concentration, temperature, and reaction rate. The PFR is a tubular reactor where there
are no radial variations in concentration, temperature and reaction rate. The MMR, SFR,
and CFR are different types of differential sidestream reactors. The MMR allows for mixing
at the earliest possible moment by utilizing a side feed along a tubular reactor while the
SFR allows for mixing at the latest possible moment by using a side exit stream. The CFR
employs both the side feed and side exit streams. Schematic models of all the reactors are
shown in Figure 2. The CFR can be viewed as a generalization of the PFR, MMR, and SFR
since it incorporates the aspects of each into a single unit. Therefore, only the CSTR and
CFR need to be in the superstructure since the PFR, MMR, and SFR can be obtained from
the CFR.
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Figure 2: Schematic representation of the various reactor units.

These units are incorporated into the superstructure along with mixers and splitters that
interconnect the various units to create the reactor network. These allow for various flow



patterns through the network such as parallel or series combinations. An example of such a
superstructure that consists of a CSTR and a CFR is shown in Figure 3.

2.2 Mathematical Modeling of Superstructure

Once the superstructure has been established, the next step in the optimization approach is
its mathematical modeling. The model formulation involves material and energy balances
around all of the units in the superstructure: the feed splitter, the mixers before the reactor
units, the reactor units (shown in Figure 2), the splitters after the reactor units, and the
product mixer.

The objective function for the reactor network synthesis problem can have a number
of different forms. One objective is to maximize the yield of a desired product. Another
objective may be based upon economic criteria reflected by the value of the product, the
cost of the reactors, and the cost of the utilities. The constraints for the problem consist
of material and energy balances for the units in the process and logical constraints for
maintaining acceptable arrangement of process units.

The mathematical modeling of the mixers, splitters, and CSTRs leads to algebraic equa-
tions while the modeling of the PFR, MMR, SFR and CFR leads to differential equations.
The overall mathematical model for the superstructure is a system of Differential and Al-
gebraic Equations (DAEs). The variables in the model are the flowrates, compositions,
temperatures, reactor volumes, and enthalpies.

The superstructure has been developed for general situations and likewise the modeling
of the superstructure can be applied to general situations. No assumptions such as constant
density or ideal gas need to be made; however, information is required for closure relation-
ships so that the model can be fully specified. For example, when reaction rates are given
as functions of concentration, a relationship which determines the concentration of a species
based on the composition and flowrate of the stream must be known. General reaction mod-
eling and general reaction kinetics are permissible in the model. The stoichiometry of the set
of reactions is assumed to be known and the set of stoichiometrically independent reactions
is given. The reactions are conveniently described by the matrix, v; ;, where the elements
represent the stoichiometric coefficients of species i in reaction j. (The index ¢ is used to
denote a component in the set of components I and j is used to represent a reaction in the
set of reactions J.)

The rate of reaction, r;, is defined as the amount of reaction per unit time per unit
volume of mixture. In general, the reaction rate depends on the concentration of the species,
c;, and the temperature, T, and is expressed as:

ry = f]r(claT)

The rate expressions for the reactions may take on a variety of forms such as power laws or
Langmuir-Hinshelwood type expressions. The temperature dependence is usually described
by the Arrhenius law. The rate of production or consumption of the species is given by the
product of v; ; and r;.

For the modeling of the superstructure, the variables used are the volumetric flowrates, F,
the molar concentrations, ¢;, molar density, p, and the molar enthalpies, H;. Superscripts are
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Table 1: Superscript notation for the reactor network superstructure.

Superscript  Stream

feed stream

CFR side inlet stream
CFR main inlet stream
CSTR inlet stream

CFR main outlet stream
CFR side outlet stream
CSTR outlet stream
product stream

CSTR

CFR side entering stream
CFR

CFR side leaving stream

S W I TR0 A0 >

used to identify which variables correspond to which streams or units, and subscripts are used
to index the variables for multiple occurrences. The superscripts and their corresponding
identifications are listed in Table 1 and the subscripts and their corresponding sets are listed
in Table 2. A double superscript and double subscript are used to denote a connecting
streams from one unit to another. For example, the flowrate F’§ is the volumetric flowrate
from feed splitter r to the kth CFR main feed, and c7; is the concentration of component ¢
in feed stream r.

2.2.1 CSTR
The material balance for the CSTR units takes the form:

A~ FE =V vt Viel VIEL (1)

jeJ

where ¢, and ¢/, are the molar concentrations of component i into and out of reactor I
b )

respectively; F and F) are the volumetric flowrates out of and into reactor I; v;; is the
stoichiometric matrix for the reactions, and 77" is the rate of reaction j in reactor [.
The energy balance is

HipiFY — Hip{F! = Q" Viel Vel (2)

where H{! and H} are the total molar enthalpies in the inlet and outlet streams respectively,
pi and p] are the molar densities of the inlet and outlet streams, and Q7" is the heat flow
into the reactor.

2.2.2 CFR

For the modeling of the CFR, the following assumptions are made:



Table 2: Subscript notation for the reactor network superstructure.

Subscript Set Correspondence

) 1 Components
J J  Reactions

k K CFRs

l L  CSTRs

r R Feeds

P P Products

e steady one-dimensional flow
e the influx (sidestream) is instantaneously mixed with the reactants in the reactor
e no axial diffusion

A differential element of the CFR as shown in Figure 4 is used for the material and energy
balances. The CFR is mathematically modeled by differential equations over the volume of
the reactor. The reactor model has differential sidestreams both entering and exiting along
the length of the reactor, as well as differential heating and cooling along the reactor.

The material balance is

dct,F) _ , dFg _ , dff
v kigy T Gkigy

+Zl/wrk] Viel Vke K (3)

jeJ

where ¢} ; is the molar concentration of species ¢ within reactor, ¢} ; is the molar concentration
of species i in the feed sidestream to reactor k, and F} is the volumetric flowrate in reactor
k. The differentials —’° and % are the differential flows from the feed sidestream and to
the exit sidestream. As before, v; ; is the stoichiometric matrix and r,tw- is the reaction rate
vector. The independent variable for the differential equation is the volume of the reactor,
V.
The energy balance is
d(HgpiFy) dFs ¢ (dFY  dQ;

— Hip e ke 4
av Py T P gy T gy TRE (4)

where H} and pf, are the molar enthalpy and molar density within reactor k, H} and p are

t
the enthalpy and density of the side feed stream, and dd% is the differential heat flow rate
into reactor k.
The initial conditions for the differential equations are the feed conditions of the reactor:

t
Ck,i

veo=Chi Vi€EI VEEK (5)

iy =Ff VkeK (6)

10



dFs
Ft o T
dv
dF°
F° ¢ T°

Figure 4: Differential element of the CFR.

Hi|,_,=H; VkeK (7)

The final conditions of the CFR are connected to the outlet of the CFR through constraints
imposed when V = V.

Cz,i‘vzvt = Cz,i Viel Vke K (8)
FI§|V:‘/t :er Vk € K (9)

The material balance for the feed sidestream is

d(ck,i F¥) dF}
——" = —C. Viel VkeK 11
dv “higy 'E © (1)
and the energy balance is
d(Hi piFy) dFy}
— 2 r F = H}p; Vk e K 12

The values of ¢ ;, Hy, and p; as functions of the reactor position must be known. The
equations can be simplified by assuming the conditions of the sidestream do not change
along the length of the reactor. If the conditions are constant in V', the material and energy
balances both simplify to

dFy  dFy
v dV

Vk e K (13)

11



The sidestream formed from the material leaving the reactor is described by the following
differential equation:

d(c%,iFlg) _ Ct .d_F;é’

av bty

where ¢ ; and F}? are the molar concentration and volumetric flowrate of the side exit stream
_ Ry

Viel VkeK (14)

and % is the differential flow from the reactor. The energy balance is

d(ngp%Flg) t tdF,;’

dv KOk gy

The final conditions of the side exit stream are connected to the side exit outlet stream
through the following constraints:

Vk € K (15)

Saly_=cl; Viel Vkek (16)
Fly_yi=F VkeK (17)
HEly—ye = I’I,ic Vk € K (18)

A key characteristic of the CFR modeling that should be noted is that the differential
equations have variable initial conditions. Since the initial conditions correspond to the inlet
conditions for the reactor, they must be optimized in the solution procedure.

2.2.3 Splitters

Splitters are situated in the superstructure to split the feed for each of the reactor units and
to split the output from each of the reactors for feed to the rest of the reactors as well the
product mixer. A perfect splitter is assumed in that all of the outlet streams have the same
composition, temperature, and density as the feed stream.

Feed Splitter:

F* = Z(F;jz +F) + ZF;j;i Vr € R (19)

keEK leL

CFR main outlet splitter:

Ff = Z (Fh + FS) + Z Fed 4+ Z Fh Vke K (20)
k'eK leL peEP
CFR side outlet splitter:
b c d h
Fl =Y (FlL+Fl)+> Fli+) Fl vkek (21)
kK'eK leL peEP
CSTR outlet splitter:
Ff =Y (FR+F+) Fii+> F Vel (22)
keK l'eL peEP

12



2.2.4 Mixers

The mixers are used to combine all the material prior to the reactor units and to blend the

product. Material and energy balances are required for each of the mixers.
Mixers prior to the CFR side feed:

R = F Y (ch Fe + el FI) Y Yy Vi€l VkeK

TER k'eK leL

b
HYphFR =Y HEptFS + > (Hipg Fy + HLpL B+ HIpIFS Ve e K
reR k'eK leL

Mixers prior to the CFR main feed:

ity = chzFraZ + Z (chiFiin + Cljcf’,iFlgj(,:k) + Z ), Viel VkeK

rTeER k'eK leL

HipgFg =Y HEplFS + > (Hph Feey + HLpb FiS) + ) HIpFY k€ K
reR k'eK leL

Mixers prior to the CSTR feed:

B =Y FS Y (e L FL) Y e Fiy Yiel Vel

reR keK l'el

Hip{F! = HptF + > (HipiFed + HLplFI}) + Y HipiFiS Vel
r€R keK el

Product mixers:

b EF = (ch Fh+ el FLYV+Y o Fl Viel VYperP

Py P P i i
kEK leL

h h
HIphEl = " (Hepp bt + HlplFIY + ) HiplF{) VpeP
keK leL

2.2.5 Closure Relations

(23)

(24)

(25)

(26)

To fully specify the model, closure relationships that determine the density and enthalpy of
the various streams are needed. These relationships are the equations of state for the density
and enthalpy. They are generally functions of pressure P, temperature, T, and composition

or mole fraction, x;:

p:fp(PaTvx'i)

13
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H = f"P,T,z) (32)

To determine the volumetric flowrates of the various streams and obtain total material
balances, one additional expression is necessary. Provided that the density is in units of
moles per volume, the sum of the concentrations is equal to the molar density:

Mole fractions are obtained from the concentrations using the expression

C; C;
ch - ; (34)

XT; =

A similar derivation is possible using the total molar flow and molar compositions instead
of volumetric flow and concentrations. The primary difference would be that the concentra-
tions would need to be determined from the molar composition and density.

2.2.6 Volume Scaling

The independent variables for the differential equations in the model are the reactor volumes,
V. In general, these volumes will be different for each reactor and need to be optimized.
Since the optimization of the independent variables in the differential system complicates
the solution procedure, the reactor volumes are scaled and a different scaling factor is used
for each reactor. The volume is scaled using the following expression:

V=VV VkeK (35)

where V}! is the scaling parameter and V is the scaled volume and the new independent
variable. Thus, the differential is expressed as

dV = Vitdv (36)

By setting the bounds on the scaled volume to be 0 and 1, the scaling parameter V' is also
the volume of reactor k.

In Appendices A and B, the superstructure formulations based on the simplifying as-
sumptions of constant density and ideal gas are presented respectively.

2.3 Optimal Control Formulation

The problem formulation consists of an objective function, dynamic constraints, time in-
variant constraints, initial conditions, and point constraints. This dynamic optimization
problem is formulated as an optimal control problem by selecting appropriate control vari-
ables. The number of control variables that can be selected matches the degrees of freedom
for the dynamic model. The dynamic equations, dynamic variables, and the sizes of each
are listed in Table 3. There are 9K + 21 x K + J x K equations and 14K 4+ 2] x K +J x K
variables giving 5K degrees of freedom. Since each CFR in the model has an independent

14



Table 3: Number of dynamic equations and variables in the model.

Equations Size Variables Size
CFR summation of concentrations K F} K
CFR material balance IxK ¢ IxK
CFR energy balance K H} K
CFR density equation of state K ok K
CFR enthalpy equation of state K T} K
P} K
CFR feed sidestream material balance K Fy K
CFR exit sidestream summation of concentrations K Fy K
CFR exit sidestream material balance I'xK ¢, IxK
CFR exit sidestream energy balance K Hp K
CFR exit sidestream density equation of state K Ju K
CFR exit sidestream enthalpy equation of state K 17 K
pp K
CFR reaction rates IxK 71}, Jx K
F K
Fy K
: K

set, of equations, each with 5 degrees of freedom, 5 control variables must be selected for
each CFR from the set of dynamic variables. The natural selection for the control variables
are those which represent quantities that can be manipulated such as flow rates or tempera-
tures. The pressure is often fixed thus eliminating two degrees of freedom. One possible set
of control variables are the sidestream flowrates, F}¥ and FY, and the CFR temperature 7).
There are other possible choices for the control variables. For example, the heat load, Q%
could be chosen instead of the temperature.

2.4 General Model Representation

For the purposes of the development of the solution algorithm, it is convenient to express
the problem in the following general form:
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where J is the objective function, f is the set of dynamic state equations, ¢ are the initial
conditions, g’ and h' are the point constraints, and g” and h” are the general algebraic
constraints. For the variables in the problem « is the vector of time invariant continuous
variables, z is the vector of dynamic state variables, and u is the vector of control variables.
The independent variable is ¢ which corresponds to the scaled volumetric position along the

reactor (V).

3 Solution Methodology

The optimal control problem (37) is an optimization where the decisions are the control
functions w(t) and the x variables. In finite dimensional nonlinear optimization, the deci-
sion space is equivalent to the number of decision variables. Since the time varying control
functions require an infinite number of continuous decision variables for their representa-
tion, the optimal control problem is an infinite dimensional optimization. There are several
ways to solve optimal control problems. These methods are (a) the solution of the nec-
essary conditions, (b) dynamic programming, (¢) complete discretization, and (d) control
parameterization. The solution of the necessary conditions and the application of Pontrya-
gin’s maximum principle as described in Bryson and Ho?* leads to the solution of two-point
boundary value problems. Dynamic programming approaches employing grids for both the
state and control variables have been proposed and applied to various systems2%26:27:28 - Com-
plete discretization methods discretize all the dynamic equations with respect to all dynamic
variables. The DAEs are thus transformed into algebraic equations, and the problem can
be solved using nonlinear programming techniques. Finite element collocation techniques
were proposed by Cuthrell and Biegler?® for the full discretization of DAE problems. The
collocation methods were extended in Logsdon and Biegler®® and Vasantharajan and Biegler
31 to include appropriate error constraints. The control parameterization techniques apply
discretization only to the control variables. The problem is formulated as an NLP where
the control parameters are determined through the optimization procedure and the DAE
system is solved through an integration technique. This approach and its application to
DAE problems has been studied by Vassiliadis et. al.3?33,

The last two approaches, collocation and control parameterization, are widely used in
the solution of optimization problems involving DAEs. The collocation methods have the
advantage of optimizing the objective function and reducing the violation of the constraints
simultaneously. This can reduce the overall computational cost of solving the problem.
Another advantage is that the entire formulation is an independent NLP which facilitates
the incorporation of general constraints. The disadvantage of the full discretization methods
is that the number of variables in the NLP formulation becomes very large as the number
of state variables in the problem increases. This method also requires a fixed number of
discretization elements, and it leads to ill-conditioning of the NLP when stiff models are
considered.

The control parameterization method is a sequential approach where the solution of the
DAEs is decoupled from the NLP optimization. The DAEs are integrated along with the
variational equations in order to obtain the required solution and gradient information. Al-
though the solution of the DAEs can be computationally expensive, by decoupling them from

16



the optimization problem, the algorithm utilizes the features of the integration techniques.
The state-of-the-art integrators can automatically adjust the number and size of the steps to
handle the stiffness of the DAEs and well-suited for handling large, complex DAE models.

These two methods have their similarities as well. Whereas the state variables are ex-
plicitly discretized in the full collocation technique, the control parameterization method
uses integration to solve the DAEs which essentially also discretizes the state variables. This
similarity is enhanced by the fact that the full collocation can be shown to be equivalent to
a Runge-Kutta scheme. The Backwards Difference Formula (BDF) methods for integration
tend to be more robust and efficient than Runge-Kutta methods. Using the control param-
eterization method with the integration ensures that the correct number of steps are taken
and that the error criteria are satisfied.

Due to the advantages of the control parameterization approach, it is applied to solve the
optimal control problem in this work. The application of control parameterization techniques
for process synthesis is described by Schweiger and Floudas®! where the focus is on the
interaction of design and control and the resulting problem is a mixed-integer optimal control
problem. A similar methodology is used in this work for the solution of the reactor network
synthesis problem.

3.1 Parameterization of the Optimal Control Problem

Applying control parameterization reduces the infinite dimensional optimal control problem
to a finite dimensional problem. The basic idea behind the control parameterization is the
express the control variables u(t) as functions of time invariant parameters. This param-
eterization can be done in terms of the independent variable ¢ which is described by an
appropriate open loop control law:

u(t) = p(w, 1) (38)

A convenient choice for the control parameterization function ¢(w,t) is the Lagrange poly-
nomial. These are interpolating functions where the parameters are node values that deter-
mine the shape of the function and are used as optimization variables. The time horizon
is divided into intervals with the controls defined as polynomials over each interval. The
Lagrange polynomial expression of order M in interval ¢ has the form

n
d;(w,t) = > wj; for M=1
N (39)
d;(w,t) = > wy ][] t—t,__tf for M >2
j=1 k=1k#j ° "
where ¢ is the normalized time over the interval ¢
- t—t_
f= (40)
b —ti 1

This parameterization allows for polynomial expressions of various order to be used. For
example, a piecewise linear expression with continuity between the intervals is expressed as

t—1t t—1;
ti — it
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Since the control parameters change from one interval to the next, discontinuities arise in
the DAE system.

In the reactor network synthesis problem the reactor volume needs to be optimized.
This volume is determined by the limits on the integration which are fixed in the control
parameterization approach. To allow the volume to vary, the independent variable is scaled
and the integration is performed over this scaled variable. The scaling factor becomes a
variable which can be optimized. For example, consider the differential equation

d
== f(z2)

The variable ¢ can be scaled using the relation
t=r1t

where t is the scaled time and 7 is the scaling factor. Substituting this into the differential
equation results in
% =71f (Z ) :C)

where 7 is now a variable for the optimization. By choosing the limits of the scaled time
in an interval to be 0 and 1, the scaling parameter becomes the true size of the integration
horizon, which is the volume of the CFR. Scaling factors, 7; are introduced to allow the size
of the each interval to vary. If the scaled size of each interval is one, then the true total size
is the sum of the scale factors for each interval. Note that this scaling affects the dynamic
equations which explicitly depend on time. The real time must be determined from the sizes
of the intervals and the scaling factors for each interval.

The set of time invariant parameters x is now expanded to include the control parameters:

= {z,w} (42)
The set of DAEs (f) is expanded to include parameterization functions

FO) ={r0),o()} (43)
and the control variables are converted to dynamic state variables:
2= {zu} (44)
Through the application of the control parameterization, the control variables are effec-
tively removed from the problem and the following NLP/DAE results:
min  J(2(t;), 2(t;), )
st f(2(t), 2(t), z,t
c(z(ty),
h'(2(t:), 2(t:),
g'(2(t:), z(t:),
hll(
g"(
S

8 8
I
coococoo

l;
ti (45)

§/\§/\_/\_/vv
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&
&

xr
t; € [to,

- |
2.

This problem is an optimization in the space of the & variables where J, g’, and h', are
implicit functions of & variables through the solution of the DAE system.
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3.2 Solution of NLP/DAE

Standard gradient based methods for solving NLPs such as reduced gradient methods, con-
jugate gradient methods, sequential quadratic programming methods, require function eval-
uations along with the gradient evaluations. For this problem, the function evaluations and
gradients with respect to @ are required for J, h', g’, h", and g”. For h", and g”, analytical
expressions can be obtained. However, for J, h', g' the function evaluations and gradients
are determined as implicit functions of & through the solution of the DAE system. Integrat-
ing the DAE system along with the variational equations provides the values of the state
variables at the time instances, z(t;), as well as the gradients Z—;. With this information
known, the functions J, g’, and h' are evaluated directly, and the gradients are determined

by applying the chain rule:

dJ

de (8_Z> (‘l;) N (a—i>
- (3 (3) (3
= (a) (&) ()

With all of the function evaluations and gradients known, the problem can be solved using
existing local NLP optimization codes.

4 Algorithmic Framework

The proposed algorithm for the solution of the general optimal control formulation has
been implemented in the software package MINOPT?%36, MINOPT is a general purpose
optimization package capable of addressing a wide variety of problem types described by
the types of variables and constraints used in the problem. MINOPT handles the following
types of variables:

Continuous time invariant variables

Continuous dynamic variables

Control variables

Integer variables
and the following types of constraints:
e Linear

e Nonlinear
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e Dynamic
e Dynamic Piecewise Continuous
e Dynamic Point
e Dynamic Path
MINOPT can address the following classes of problems:
e Linear Programs (LP)
e Mixed Integer Linear Programs (MILP)
e NonLinear Programs (NLP)
e Mixed Integer NonLinear Programs (MINLP)
e Dynamic Simulations
e Optimal Control Problems (OCP)
e Mixed Integer Optimal Control Problems (MIOCP)

The class of problems which are of importance for the purposes of this work are the optimal
control problem. Note that MINOPT is also capable of handling optimal control problems
involving discrete decisions (MIOCPs).

MINOPT has two phases: first, the problem information is read and stored, and second,
the problem is solved. The first phase features a parser which reads all of the problem
information from an input file. The input file is written in a specific modeling language
which has a clear syntax and allows the user to enter the problem in a concise format. The
input file includes information such as variable names, variable partitioning, parameter defi-
nitions, option specifications, and constraint definitions. The parser features index notation
for compact constraint notation, the ability to recognize and handle the various constraint
types, and the capability of determining the analytical Jacobian information by employing
automatic differentiation.

After the problem information has been determined, MINOPT employs the appropriate
algorithm to solve the problem. For the solution of the various problems and subproblems,
MINOPT interfaces with existing software. The types of problems and the solvers imple-
mented in MINOPT are shown in Table 4. The flow of the program is shown in Figure 5.

Many complex reaction mechanisms have numerous reactions and species. Keeping track
of the many different parameters associated with the problem can be difficult. The Chemkin
package3” has been developed to help simplify the task of formulating and solving problems
involving gas-phase chemical kinetics. MINOPT has a connection to Chemkin through
which it can obtain all of the details of the reaction mechanism and use them in the model
formulation.

MINOPT is available through Princeton University and information regarding the soft-
ware can be obtained at http://titan.princeton.edu/MINOPT.
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Problem Structure

Input Parser Master
File
fixed X y
fixedy fixed x
command - -
line Main optimal Method Primal Integrator
solution dz
HoA Z Gx
- dh dg
Figure 5: Program flow for MINOPT.
Table 4: Solvers implemented in MINOPT.
Problem Type Algorithm Solver
LP Simplex method CPLEX?*
MINOS?3?
LSSOL4
MILP Branch and Bound CPLEX®
NLP Augmented Lagrangian/Reduced Gradient MINOS?
Sequential Quadratic Programming NPSOL*!
Sequential Quadratic Programming SNOPT#?
Dynamic Integration (Backward Difference Formula) DASOLV*3
Integration (Backward Difference Formula) DASSL**
MINLP Generalized Benders Decomposition MINOPT

Outer Approximation/Equality Relaxation MINOPT
Outer Approximation/Augmented Penalty MINOPT
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5 Computational Studies

The proposed approach has been applied to numerous examples ranging from the simpler
constant density isothermal and nonisothermal mechanisms involving three reactions to com-
plex nonisothermal mechanisms involving many species and reactions where the kinetic and
thermodynamic data are obtained through Chemkin.

The superstructure used for the examples consists of a CFR and CSTR as shown in
Figure 3. The control variables selected for the CFRs are the sidestream flowrates and the
temperature in the reactor. For the control parameterization, piecewise linear functions
are used for the sidestream flowrates and piecewise quadratic functions with continuous
first derivatives are used for the temperature profiles. The time horizon is divided into ten
intervals for the control parameterization.

Both the relative and absolute NLP optimization tolerances were set to 1 x 10~% and the
integration tolerance was set to 1 x 1078, All problems were solved on an HP C-160.

5.1 Isothermal Examples

The first set of examples are isothermal problems. The temperature dependence is removed
from modeling equations and the energy balances are not included. All of the isothermal
examples are also constant density. For each problem, the reaction mechanism, the sto-
ichiometric coefficient matrix, reaction types, kinetic parameters, and feed conditions are
given.

5.1.1 Example 1—Isothermal Van de Vusse Reaction

The Van de Vusse reaction mechanism has four species and three reactions:

where the rate expressions are

Ji = kica
f; = kycp
f§ = k30,24

and the stoichiometric matrix for this mechanism is

-1 0 -2

1 -1 0

0o 1 0

0o 0 1
The feed is pure A, the desired product is the intermediate B, and the objective is to
maximize the yield of B. The problem has 93 variables (16 dynamic) and 79 constraints.

Four different cases are studied where each involves a different set of parameters as shown
in Table 5.
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Table 5: Parameters for isothermal Van de Vusse reaction.

Parameter Casel Case?2 Case3 Case4
ki [s7] (first order) 10 10 10 1
ky [s71] (first order) 1 1 1 2

k3 [L/(mol s)] (second order) 0.5 0.25 0.5 10
Feed flowrate [L/s| (pure A) 100 100 100 100
Feed concentration [mol A/L] 0.58 0.58 5.8 1.0

For Cases 1 and 2, the solution is found to be a single PFR whereas for Cases 3 and
4, the optimal reactor network is found to be a CSTR in series with a PFR. The reactor
network solutions for Cases 3 and 4 are shown in Figures 6 and 7. The results for all of the
cases using the proposed approach and the results of previous work are shown in Table 6. In
all of the cases, an improved solution has been found in comparison to previous work. This
is attributed to the fact that no approximation is made in the modeling of the PFR.

100L/s CSTR PFR
G,=5.8 mol/L 11.350L 16.984 L G,= 3.6819 mol/L

Figure 6: Reactor network solution for the isothermal Van de Vusse reaction—Case 3.

100L/s CSTR PFR
G=1.0mol/L 29.522 L 15.758L G,= 0.070267 mol/L

Figure 7: Reactor network solution for isothermal Van de Vusse reaction—Case 4.

5.1.2 Example 2—Isothermal Trambouze Reaction

The Trambouze reaction involves a zero order, a first order, and a second order reaction all
in parallel:

A 2—~C
\
D
The rate expressions are
Ji = kica
Jo = kacp
I3= k30,24
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Table 6: Summary of results for the isothermal Van de Vusse reaction.

Reference Objective Solution!
Case 1
Chitra and Govind* 0.4362 mol/L.  PFR
Achenie and Biegler® 0.4368 mol/L.  PFR (29.65 L)
Kokossis and Floudas!? 0.4364 mol/L.  PFR (25.396 L)
Proposed Approach 0.43708 mol/L.  PFR (25.335 L)
Case 2
Achenie and Biegler'® 0.4391 mol/L.  (0.2370 s)

Balakrishna and Biegler'®  0.4429 mol/L (0.288 s)
Lakshmanan and Biegler?? (.4269 mol/L PFR (0.262 s)

Proposed Approach 0.44297 mol/L.  PFR (25.458 L)
Case 3
Chitra and Govind*° 3.6772 mol/L.  PFR
Kokossis and Floudas!® 3.6796 mol/L.  CSTR (11.382 L) + PFR (16.989 L)
Proposed Approach 3.6819 mol/L.  CSTR (11.350 L) + PFR (16.984 L)
Case 4

Balakrishna and Biegler'®  0.069 mol/L RR (0.1005 s) + PFR (0.09 s)
Lakshmanan and Biegler?? 0.0703 mol/L CSTR (0.302 s) + PFR (0.161s)
Proposed Approach 0.070267 mol/L.  CSTR (29.522 L) + PFR (15.758 L)

Solutions are reported in terms of the reactors in the flowsheet along with their volume (L)
or space time (s).
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The stoichiometric matrix is

e P e R S
o= O
_ o O -

The parameters for this example are given in Table 7. The objective is to maximize the
selectivity of C to A which is defined as C¢/(1 — Ca).

Table 7: Parameters for the Trambouze reaction.

Parameter Value

ky 0.025 mol/(L min) (zero order)
ko 0.2 min ! (first order)

ks 0.4 L/(mol min) (second order)
Feed flowrate 100 L/min pure A

Feed concentration 1.0 mol/L

This problem is noted for having multiple solutions. In Kokossis and Floudas!® three
different structures were found each with the same selectivity of 0.500 and the authors
indicated that there are infinitely many solutions. In this work, numerous solutions have been
obtained. One extreme solution is a single 750 L. CSTR where the product concentrations
for Cc and Cy4 are 0.375 mol/L and 0.25 mol/L respectively. Another extreme solution is a
single differential sidestream reactor with a linear feed profile along the reactor. All of the
feed is fed to the side feed for the CFR and fed linearly with respect to the position along
the reactor. Other solutions involving both types of reactors, recycles, and bypasses have
also been obtained.

5.1.3 Example 3—Isothermal a-Pinene Reaction

The reaction mechanism for the conversion of a-pinene to several products takes place
through the following scheme:

A E
/
k2
K, Ky
C K, D ke B
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The rate expressions are

ff = kicy

Jo = kocy

f§ = kscp

11 = kac)

[ = ksch

feT = k¢cp

I7 = kqce

The stoichiometric matrix for this mechanism is
-1 -1 0O 0 -2 0 0
0 O 1 0 0 —1 0
Vij = 0O 0 O 1 1 0 -1
0 1 -1 -2 0 1

1 o 0o o0 o0 o0 o0

and the parameters are given in Table 8. The objective is to maximize the selectivity of C
to D which is defined as C/Cp. The volume of the reaction for this example is constrained
to 6000 L and the minimum concentration of D in the product is 0.01 mol/L. The problem
has 110 variables (22 dynamic) and 97 constraints.

Table 8: Parameters for isothermal a-pinene reaction.

Parameter Value

k1 0.33384 s~! (first order)

ko 0.26687 s~! (first order)

ks 0.14940 s ! (first order)

k4 0.18957 L/(mol s) (second order)
ks 0.009598 L/(mol s) (second order)
ke 0.29425 s~! (first order)

kr 0.011932 s~ (first order)

Feed Flowrate 100 L/s (pure A)

Feed Concentration 1.0 mol/L A

The solution found as shown in Figure 8, consists of a single PFR with its volume at the
upper limit of 6000 L. and a bypass stream. The maximum selectivity is found to be 1.5570
and the CPU time required is 39.4s (HP C-160). These results are compared to those of
previous work in Table 9.

Most of the previous approaches failed to identify the bypass stream in the solution. If
no limit is placed on the size of the PFR, the value of the objective at equilibrium is 1.5570.
If the volume of the reactor is constrained to 6000 L, the maximum value of the objective
that can be achieved is 1.48 as equilibrium can not be obtained. The value of 1.5570 can be
achieved by using a bypass stream. Because the objective is the ratio C¢/Cp, the overall
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amount of conversion does not matter. By sending only a fraction of the feed to the PFR and
allowing the reaction to reach equilibrium, the value of 1.5570 can be achieved for the PFR.
When the exit stream from the PFR is mixed with the bypass stream, the ratio C/Cp does
not change. Thus, the objective value of 1.5570 can be achieved for even smaller sizes of the
PFR. As the reactor gets smaller, less of the feed is sent to the reactor so that equilibrium
can be achieved and the objective value of 1.5570 can be maintained.

89.778 L/s
FaWalals WEN)
1000L/s ~~10:222tfs PFR s
G=1.0mol/L 6000 L G =0.15259 mol/L G =0.015598 mol/L

G =0.098003 mol/L G, =0.010018 mol/L

Figure 8: Reactor network solution for the a-pinene reaction.

Table 9: Summary of results for the Isothermal a-pinene reaction.

Reference Maximum selectivity solution

Kokossis and Floudas'® 1.402

Balakrishna and Biegler'®  1.48 PFR (60 s)
Lakshmanan and Biegler?® 1.48 PFR (60 s)

Proposed Approach 1.5570 PFR (6000 L) + bypass

5.1.4 Example 4—Isothermal Denbigh Reaction

The Denbigh reaction mechanism is

k k
A——~B—>—~C
ks K,
D E
The rate expressions are
i =k,
f3 = kacs
f3 = ksca
fi = kachy

Two distinct cases are examined for this problem.
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In the first case, the objective is to maximize the selectivity of B to D (Cp/Cp). The
stoichiometric coefficient matrix is

-1 0 -1 0

05 -1 0 -1

v = 0o 1 0 O
0o 0 1 O

0 0 0 1

and the parameters are given in Table 10. This problem has 114 variables (19 dynamic)
and 90 constraints. The optimal reactor network shown in Figure 9 is found to be a single
PFR with a volume of 20.750 L. The objective value is 1.3218 and the solution is obtained
in 113.33s of CPU time on an HP C-160.

Table 10: Parameters for isothermal Denbigh reaction.

Parameter Value

k1 1.0 L/(mol s) (second order)
ko 0.6 s (first order)

ks 0.6 s~! (first order)

k4 0.1 L/(mol s) (second order)
Feed flowrate 100 L/s

Feed concentration 6.0 mol/L A, 0.6 mol/L D

100 L/s
CA 6.0 mol/L 20.750 L C =1.4077 mol/L

—0 6 mol/L C =1.0650 mol/L

Figure 9: Reactor network solution to the Denbigh reaction—Case 1.

In the second case, The objective is to maximize the production of C subject to 95%
conversion of A. A slightly different stoichiometric matrix is considered:

N

Il
cCo oM
cCo RO
o~ oo~
—_—o o~ o

The same rate constants are used as in Case 1, but the feed consists only of pure A with a
concentration of 6.0 mol/L. Two CSTRs and one CFR are considered in the superstructure
and the problem has 130 variables (19 dynamic) and 107 constraints.
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The solution as shown in Figure 10 consists of a PFR with a volume of 73.563 L followed
by a CSTR with a volume of 470140 L. The network involve a bypass stream and gives
product concentrations of 0.300 mol/L A, 0.000808 mol/L B, 3.5399 mol/L of C, 1.6430
mol/L of D, and 0.51627 mol/L of E.

The results of the isothermal Denbigh reaction are summarized with those of previous
work in Table 11.

5.00L/s

100L/s 95.00 L/s PFR 95.00L/s CSTR 95.00L/s 100L/s
G=6.0mol/L"— 73563 L G=0.79947 mol/L 470140L G,=0.000269 mol/L " G,= 0.3000 mol/L

G=1.9929 mol/L G=3.7260 mol/L G=3.5399 mol/L

Figure 10: Reactor network solution to the Denbigh reaction—Case 2.

Table 11: Summary of results for the isothermal Denbigh reaction.

Reference Objective Solution
Case 1
Achenie and Biegler!® 1.322 2 PFRs in series
Kokossis and Floudas!® 1.319 PFR (20.7062 L)
Balakrishna and Biegler'®  1.322 PFR (20.9 L)
Lakshmanan and Biegler?? 1.322 PFR (20.9 L)
Proposed Approach 1.3218 PFR (20.750 L)
Case 2

Balakrishna and Biegler'® 3.54 mol/L.  PFR (0.766 s) + CSTR (3505 s)
Lakshmanan and Biegler?® 3.54 mol/L.  PFR (0.766 s) + CSTR (3505 s)
Proposed Approach 3.5399 mol/L.  PFR (0.77435 s) + CSTR (4948.8 s)

5.2 Nonisothermal Examples

The next set of examples involves nonisothermal reaction kinetics. The ability to manipulate
the temperature allows for control of the reaction rate and better control of the reactor
concentrations. For most of these examples, the Arrhenius law is used to describe the
temperature dependence:

E(T) = kewr

5.2.1 Example 5—Nonisothermal Van de Vusse Reaction

In this example the same reaction scheme as in Example 1 is used, but the rate constants
now depend on the temperature as defined by the Arrhenius law. Two cases are considered:
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an exothermic reaction and an endothermic reaction. The objective for both cases is to
maximize the yield of B. In both cases, the feed flowrate is 100 L/h of pure A with a
concentration of 1 mol/L. For Case 1, the bounds on the temperature are 300° K and 810°
K, and for Case 2 they are 450° K and 810° K. The parameters for both cases are given in
Table 12.

Both cases are first solved using ten intervals of equal size for the control parameterization.
The formulation has 118 variables (18 dynamic) and 90 constraints. Both cases are again
solved using 10 individually scaled intervals which has 128 variables (18 dynamic) and 91
constraints.

Table 12: Parameters for the nonisothermal Van de Vusse reaction.

k E e
pCyp
1 5.4e9 h! 15.84 kecal/mol -84 K L/mol
Case 1: 2 1.6el2h™! 23.76 kcal/mol -108 K L/mol
3 3.6e5 L/(molh)  7.92 kcal/mol  -60 K L/mol
1 5.4e9 h~! 15.84 kcal/mol 84 K L/mol
Case 2: 2 3.6ed h™! 7.92 kcal/mol 108 K L/mol
3 1.6el2 L/(mol h) 23.76 kcal/mol 60 K L/mol

Nonisothermal Van de Vusse—Case 1: Exothermic reaction

Using the equally spaced intervals, the optimal network as shown in Figure 11 consists of
a PFR with a volume of 2.4504 L followed by a CSTR with a volume at its upper bound of
10000 L. The maximum yield of B obtained is 0.82673 mol/L B. The temperature profile
in the PFR as shown in Figure 12 initially falls sharply then rises and levels off. The
concentration profiles are shown in Figure 13.

When the control intervals are individually scaled, the maximum yield of B obtained is
0.83913 mol/L. The solution as shown in Figure 14 is a single PFR with a sharply falling
temperature profile followed by a CSTR. The PFR temperature profile is shown in Figure 15
and the concentration profile is shown in Figure 16. By allowing the size of each control
interval to vary, the temperature is permitted to fall more sharply than in the case where
the lengths are equal. Note that both constraints on the reactor volumes are active.

100L/s PFR ] [ CSTR
G=lOmol/L|  24504L  |G=011019mol/L |10000L 323.97K] G =0.00819 molL

G=0.74804 mol/L G=0.82673 mol/L
G=0.06396 mol/L G=0.07631 mol/L
G,=0.03890 mol/L G=0.04439 mol/L

Figure 11: Reactor network solution for the nonisothermal Van de Vusse reaction—Case 1
(equally sized intervals).
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Reactor Volume (L)

Figure 12: Temperature profile for the PFR in the nonisothermal Van de Vusse solution—
Case 1 (equally sized intervals).

1.0

0.8

Concentration (mol/L)

Reactor Volume (L)

Figure 13: Concentration profile for the PFR in the nonisothermal Van de Vusse solution—
Case 1 (equally sized intervals).
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100 L/s PFR ] [ CSTR
G=10moliL|  1000L  |G=0,00893mol/L |10000L 300.00K | G =0.00149 mol/L

G,=0.83747 mol/L G=0.83913 mol/L
(‘C:O.O7214 mol/L (‘020.07279 mol/L
G,=0.04323 mol/L G,=0.04330 mol/L

Figure 14: Reactor network solution for the nonisothermal Van de Vusse reaction—Case 1
(individually scaled intervals).

800.0

600.0 - 8

500.0 - 8

Temperature (K)

400.0 N

n 1 n 1 n 1 n 1 n
0.0 200.0 400.0 600.0 800.0 1000.0
Reactor Volume (L)

Figure 15: Temperature profile for the PFR in the nonisothermal Van de Vusse solution—
Case 1 (individually scaled intervals).
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Figure 16: Concentration profile for the PFR in the nonisothermal Van de Vusse solution—
Case 1 (individually scaled intervals).

Nonisothermal Van de Vusse—Case 2: Endothermic reaction

Using the equally sized intervals, the optimal network as shown in Figure 17 consists of a
CSTR of volume 0.06756 L followed by a PFR with a volume of 0.08030 L. The temperature
profile as shown in Figure 18 appears to rise in an exponential fashion. The concentration
profiles are shown in Figure 19.

When the control intervals are individually scaled, the optimal network shown in Fig-
ure 20 consists of a single PFR with a sharply rising temperature profile. The temperature
profile which is shown in Figure 21 starts at the lower bound of 450° K and stays there for
approximately one third of the length of the reactor. At this point the temperature rises
in a seemingly exponential fashion. The spike in the temperature profile corresponds to an
control interval with a size of zero and has no effect on the concentration profiles which are
shown in Figure 22.

The results for the nonisothermal Van de Vusse along with those of previous work are
summarized in Table 13. Note that for Case 2, the results obtained by Chitra and Govind
16 were obtained by allowing the temperature to rise to 1265° K. If the upper bound on the
temperature is increased to 1265° K, the optimal solution is a PFR with the temperature
rising to its upper bound, and the maximum yield obtained improves to 0.8383 mol/L.

5.2.2 Example 6—Nonisothermal Parallel Reactions

This example is taken from Levenspiel*” and involves two parallel reactions:

33



100 L/s CSTR ] [ PFR
G=10mol/L| 0.06756 L 450K |G=0.92870mol/L |  0.08030L | C,=0.00834 mol/L

G,=0.06632 mol/L_ G,=0.82290 mol/L
G.=0.00230 mol/L G.=0.07941 mol/L
G,=0.00134 mol/L G,=0.04467 mol/L

Figure 17: Reactor network solution for the nonisothermal Van de Vusse reaction—Case 2
(equally sized intervals).
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Temperature (K)
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Reactor Volume (L)

Figure 18: Temperature Profile for the PFR in the nonisothermal Van de Vusse solution—
Case 2 (equally sized intervals).
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1.0

Concentration (mol/L)
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Figure 19: Concentration profiles for the PFR in the nonisothermal Van de Vusse solution—
Case 2 (equally sized intervals).

100L/s PFR
G=10mol/L|  0.195I5L G,=0.00687 mol/L

G=0.82908 mol/L
G=0.07948 mol/L
G,=0.04228 mol/L

Figure 20: Reactor network solution for the nonisothermal Van de Vusse reaction—Case 2
(individually scaled intervals).
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Figure 21: Temperature profile for the PFR in the nonisothermal Van de Vusse solution—
Case 2 (individually scaled intervals).
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Figure 22: Concentration profiles for the PFR in the nonisothermal Van de Vusse solution—
Case 2 (individually scaled intervals).
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Table 13: Summary of results for the nonisothermal Van de Vusse reaction.

Reference Objective Solution
Case 1
Chitra and Govind*® 0.822 mol/I. 5 PFRs
Achenie and Biegler® 0.815 mol/L. 5 PFRs (0.222s)
Balakrishna and Biegler® 0.786 mol/L.  0.22s
Kokossis and Floudas!? 0.8414 mol/L.  PFR
Proposed Approach 0.82673 mol/L.  PFR (2.4504 L) + CSTR, (10000L)
(equally sized intervals)
Proposed Approach 0.83913 mol/L.  PFR (1000 L) + CSTR (10000 L)
(individually scaled intervals)
Case 2
Chitra and Govind*® 0.834 mol/l. 2 PFRs + 2 RRs + CSTR
Achenie and Biegler® 0.183 mol/L. 2 PFRs (0.515 s)
Kokossis and Floudas'? 0.764 mol/L.  PFR
Proposed Approach 0.82290 mol/L.  CSTR (0.06756 L) + PFR (0.08030 L)
(equally sized intervals)
Proposed Approach 0.82908 mol/L.  PFR (0.19515 L)
(individually scaled intervals)
Proposed Approach 0.8383 mol/L.  PFR (0.19498)

(individually scaled intervals, 450 K < T < 1265 K)
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kK, ~C
A+B/
.

The rate expressions for these reactions are

ro= l:cl exp(}?)CAC%?’

ry = kyexp(52)C%°CE®
and the kinetic parameters are given in Table 14. There are two feed streams:
e 50 L/s pure A, 1.0 mol/L A
e 50 L/s pure B, 1.0 mol/L B
The objective is to maximize the yield of C while minimizing the reactor volume:

max 100C¢ — V,

and the temperature is bounded between 450K and 800K . The problem has 119 variables
(17 dynamic) and 89 constraints.

Table 14: Parameters for the nonisothermal parallel reactions.

k E AH

pCp

1 5.4e7 19.138 kcal/mol -10 K L/mol
2 3.6e5 9.569 kcal/mol  -20 K L/mol

The reactor network solution shown in Figure 23 consists of a isothermal MMR, with A
fed to the inlet of the reactor and B fed along the side of the reactor. In order to keep the
rate of production of D as low as possible, the rate of reaction 2 is inhibited by keeping the
concentration of B as low as possible. This is achieved by gradually adding B along the side
of the reactor. The volume of the reactor is 3.3749 L, and the temperature along the reactor
is held constant at the highest possible temperature (800° K). The outlet concentration of
B is 0.48162 mol/L, and the objective value obtained is 44.787. If the objective is just the
maximization of the yield of B, the objective value approaches the maximum possible value
of 0.5 mol/L of B as the volume of the reactor increases. The flow rate within the reactor is
shown in Figure 24. This indicates the amount of B that flows in through the sidestream.
The concentration profiles in the reactor are shown in Figure 25.

5.2.3 Example 7—Sulfur Dioxide Oxidation

In this example, the reaction studied is the oxidation of sulfur dioxide as detailed by Lee
and Aris*®. The following equilibrium reaction is considered:
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50.00L/s 49.008 L/s
G=1.0mol/L G=romoit ||| ] ]]]

50.00 L/s 50.992 L/s [ 3.3749L 100L/s
G=1.0mol/L G,=0.98054 mol/L [ 800K (=0.48162 mol/L

G=0.01946 mol/L

Figure 23: Reactor network solution for the nonisothermal parallel reaction.
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Figure 24: Flowrate profile in the MMR for the nonisothermal parallel solution.
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Concentration (mol/L)

Reactor Volume (L)

Figure 25: Concentration profiles in the MMR for the nonisothermal parallel solution.

SO, +%02 SO3

The rate expression is defined as the rate of change of the extent of reaction, g per unit mass
of catalyst and is given by:

r =k (pso,)*(po,) — kr(pso,) /2 (p0,) " (Psos)

where k; and k, are the rate constants for the forward and reverse reactions respectively
and p; denotes the partial pressures of the species. The rate expressions for the forward and
reverse reactions can be expressed in terms of the conversion and the scaled temperature ¢:

_ 50 (2.5—9)1/2(3.46—0.5¢)
rp=3.6 % 10 exp (12.07 — 357) x (22506 0050))

_ 86.45 (3.46—0.59)
rr = 3.6 x 10° exp (22-75 - 1+0.311t) X ((32.01g—0.5g)(2.5g—g)1/2)

The rates are in terms of kg mol SO3 per kg catalyst. The feed flowrate is 7731 kg/h with
a composition of 7.8 mol% SO, 10.8 mol% O, 81.4 mol% Ns.
The objective is to maximize the profit function:

1.15¢g — 0.031247 — 0.15¢

where the first term indicates the revenues from the product, the second term indicates the
cost of the catalyst (7 is the amount of catalyst), and the third term indicates the energy
costs. Adiabatic operation of the reactors is enforced, and heat can only be added to the
mixer units prior to the reactors.
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The stoichiometric limit on the maximum yield of SO3; that can be achieved is 2.5 mol
SO3 per kg of product. Using a PFR with a falling temperature profile, this limit can be
approached asymptotically as larger reactors are used.

Using individual scaling, the solution as shown in Figure 26 is found to consist of a CSTR
and an MMR where the sidestream is used to cool the reactor. The falling temperature profile
required to increase the conversion is achieved by feeding a portion of the cold feed along the
side of the reactor. The initial high temperature is achieved by first using the preheater and
then reacting in a CSTR to raise the temperature further. The temperature and flowrate
profiles for the MMR are shown in Figures 27 and 28. The maximum profit obtained is
2.1843.

5004 kg/h
T=310K | 2476 kglhm T=738¢ | CSTR PFR T=685K
] 21 04 key ( ) —
7731 kg/h /\/ R 17391 kg cat CSO—32.468 mol/kg
251 kg/h

Figure 26: Reactor network solution for the sulfur dioxide reaction.

5.2.4 Example 8—Williams-Otto Process

In this example the Williams-Otto process described in Di Bella and Stevens?®? is investigated.

This process consists of a reaction step followed by a separation step and involves a recycle
stream. The process flowsheet is shown in Figure 30 and the three reactions and their
Arrhenius parameters are shown in Table 15. The feed streams of the process are pure A
and B which react to for C. This further reacts with B to form the desired product P along
with E. The product is degraded by reaction with C to form the waste product G. In the
separation step, the waste product G is decanted first, and the balance of the product is
sent to a distillation column where the distillate is the product P and the bottoms is either
purged or recycled back to the reaction step. The separation efficiency of the column is
limited by the formation of an azeotrope, and the following constraints are imposed on the
problem:

580R< T <680R
0lb/hr < Fp < 4763 1b/hr

The goal is to determine the reactor network for the reaction step in the process that
will maximize the return on investment. The objective function includes sales volume, raw
material cost, waste treatment cost, utilities cost, expenses, a plant fixed charge, and the
plant investment and is expressed as

J = [(8400)(0.3Fp + 0.0068F, — 0.02F
—0.03F5 — 0.01Fg) — 2.22F; — 60Vp
—0.124(8400) (0.3 Fp + 0.0068F )] /(600V p)
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Figure 27: Temperature profile in the MMR for the sulfur dioxide solution.
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Figure 28: Flowrate profile in the MMR for the sulfur dioxide solution.
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Figure 29: Concentration profile in the MMR for the sulfur dioxide solution.

Product

A—r Decanter | S _
B Reactor BE
Network 23
)
Heat
Exchanger Waste
G
Recycle Purge

Figure 30: Flowsheet for the Williams-Otto Process.

Table 15: Reactions and parameters for the Williams-Otto Process.

Reactions k (hr wt.frac.)™* E/R(°R)
A+B - C 5.9755€9 —12000
C+B — P+E 2.5962¢12 —15000
P+C —- G 9.6283el5 —20000
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The problem has 179 variables (22 dynamic) and 138 constraints. The optimal reactor
network for the problem is an isothermal PFR operating at 680°R, and the optimal flowsheet
is shown in Figure 31. The maximum return on investment is 297.83%. This is a significant
improvement over the work of Di Bella and Stevens*® which report an optimal return of
72.75%.

3434 Ib/hi
Lp

10247 Ibhr A (— PFR
21889 Ib/hr B @— Vp=684.51b
T T=680R

2351 Ibthr G

57377 lb/hr

26351.46 Ib/hr

Figure 31: Optimal flowsheet for the Williams-Otto problem.

5.2.5 Example 9—Methane Conversion to Acetylene

In this example, a complex nonisothermal gas phase reaction for the conversion of methane
to acetylene is considered. The mechanism involves 36 reactions and 19 species. Hydrogen is
fed along with the methane feed in order to minimize to formation of carbon in the reactor.

The main products in the reaction are ethylene, acetylene, hydrogen, and benzene which
leads to the formation of carbon. The objective is to maximize the production of acetylene
while minimizing the production of benzene.

The kinetic constants and the reaction mechanism are taken from Olsvik et al.®® and are
shown in Table 16. The rate expression for this example is the modified Arrhenius equation:

k = kT" exp(—E/RT)

This reactions take place in the gas phase and ideal gas assumptions are made. A
constant pressure of 1 atm is assumed. The kinetic and thermodynamic data are obtained by
MINOPT through a connection to the Chemkin package3”. Heat capacities, enthalpies, and
entropies are determined as polynomial functions of temperature. Forward rate constants are
found using Arrhenius type expressions and the reverse constants are related to the forward
constants through the equilibrium constants which are determined using the free energy of
the reaction.

The desired mass fraction of acetylene in the product stream is 0.7 while the mass frac-
tions of the other products are to be minimized. The objective for this problem is a weighted
squares of the mass fractions in the product stream:

1000(yc, 11, — 0-7)% + 7(wcm,caccn)’ + 5(we,n,)’” + 10yo,m,)?

The problem has 518 variables (320 dynamic) and 420 constraints. The feed temperature is
constrained below 1300° K.
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Table 16: Mechanism and constants for the conversion of methane.

Reaction k n E

1 CH, = CH3+H 3.51 x 10*° 0.0 104000.0
2 CH;,+H = CH3z+H, 1.15 x 10* 3.0 8768.0
3 CH3; +CH; = GCyHg 1.01 x 10*®  -0.64 0.0
5 GCyHg+CH; = CyHs;+ CHy 5.50 x 1071 4.0 8296.0
6 CoHy; = CyHy+H 2.00 x 10'3 0.0  39700.0
7 CH; +CH; = GCyHy+ Hy 1.00 x 10'6 0.0  32000.0
8 GCyHy+CH; = CyHs;+ CHy 6.62 x 10° 3.7 9512.0
9 GCyHy+CH; = n-CzHy 2.00 x 10! 2.53 7170.0
12 CH3+CyH; = GCsHg 1.00 x 10*3 0.0 0.0
13 n—CsH; = CsHg+H 1.58 x 106 0.0  38000.0
14 CsHg = a-CsHs;+H 1.00 x 10'° 0.0  88000.0
15 a-C3Hs; = CyHy + CHj 1.16 x 1010 0.0  43200.0
16 a-C3H; = a-C3Hy+H 5.00 x 10'3 0.0  35000.0
17 a—C3H5 +H = a—C3H4 + H2 1.00 x 1013 0.0 0.0
18 CsHg+H = a-C3H;+ H, 5.00 x 10'2 0.0 1500.0
19 CyH; +CyH; = C4Hg 1.26 x 10'3 0.0 0.0
20 CyH3+CHy, = CyHg+H 5.00 x 10! 0.0 7315.0
21 CHy,+H = CH+H, 6.02 x 10" 0.0  22300.0
22 CyHy+CH; = GC,H+ CHy 1.81 x 10! 0.0 17300.0
23 CiHg+H = CiHs;+H, 1.00 x 104 0.0  15000.0
24 CHs = CyH,+H 1.00 x 10 0.0  41400.0
25 CcH+H = GCyH, 1.81 x 10 0.0 0.0
26 CQHg + CQHQ = C4H5 1.10 x 1012 0.0 4000.0
27 CH;+CH; = GCyH;+H 1.80 x 10!2 0.0  10400.0
28 C4H5 + CoHy — CGHG +H 6.02 x 102 0.0 9000.0
30 CQH5 + CQHQ = CQHG + CQH 2.71 x 101 0.0 23400.0
31 CQH5 +H = CQH6 3.07 x 1013 0.0 0.0
32 CHy, = CyHy+Hy 7.94 x 10'2 0.44  88760.0
33 CHs+H = GCyHs + Hy 9.64 x 10'3 0.0 0.0
34 CyHy+CHy; = p-CH,+HH 6.20 x 10" 0.0  20000.0
35 C3He = pCyHi+H, 8.00x102 044 81150.0
36 C3Hg+CH; = a-C3Hs;+CH,; 1.58 x 10'2 0.0 8800.0
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The optimal solution is an MMR with hydrogen fed both to the main feed (i.e. cofeed
with the methane) and along the side of the reactor as shown in Figure 32. The inlet
temperature to the reactor is constrained to be less than 1300° K. Since high temperatures
are necessary for the reaction to proceed, a rising temperature profile as shown in Figure 33
is required. The composition profiles are shown in Figure 34.

2146g/s H, 1.036¢/s H,
| L[] ]
16.043g/s CHJ 17.153¢g's | MMR 18.189 g/s
64TW% H, | 49622cm® 28.12wt% H,
93.53wt% CH,, 70.0wt% CH,
1300K 0.386wt% CH,

0.0977wt% CHCHCCH ,
0.0238w1% CH,

Figure 32: Reactor network solution for the methane conversion.

5.3 Local Optima

One of the most challenging aspects in optimization is guaranteeing that the global solution
has been obtained. The approach proposed here relies on local nonlinear programming algo-
rithms which only obtain the global solutions when the problem is convex. The constraints
for the NLP optimization include both the time invariant algebraic constraints as well as
the implicit point constraints. Due to the bilinear terms for the material balances and the
exponential terms for the rate expressions, the reactor network models are nonlinear and
nonconvex. In addition the implicit constraints involve the solution of a nonlinear, noncon-
vex set of DAEs. Although the convexity characteristics of the implicit functions can not be
explicitly determined, the problem can be assumed to be highly nonconvex.

Due to the nonconvex nature of the problems, there is a possibility for multiple local
solutions and thus the solutions given can not be guaranteed to be global solutions. There
also is a possibility for multiple solutions with the same objective value. This may occur in
the reactor network synthesis problem when redundant mixing patterns are possible in the
superstructure.

Multiple local optima were found for many of the example problems by solving the prob-
lems using random starting points. (This is a feature incorporated into MINOPT.) Although
all of the example problems potentially have multiple local optima, the local solutions of sev-
eral problems are examined. First, for the isothermal Van de Vusse problem, Case 3, there
are two local maxima in addition to the reported best solution of a CSTR (11.35 L) and
PFR (16.985 L) in series which has a solution of 3.6819 mol/L. In the one local solution, a
single PFR (23.637L) gives a yield of 3.57691 mol/L, and the other local solution is a single
CSTR (35.599 L) is which gives a yield of 3.0607 mol/L.

For the isothermal a-pinene reaction mechanism, the best known solution is the one
reported (1.557). One of the local solutions that has been reported in the literature is that
of a single PFR with a volume of 6000L which gives a solution of 1.476.
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Figure 33: Temperature profile in the reactor for the methane conversion solution.
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Figure 34: Composition profiles in the reactor for the methane conversion solution.
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Table 17: Local solutions for the the nonisothermal Van de Vusse example—Case 2

Optimal Yield Solution

1 0.76750 CSTR

2 0.80893 PFR

3 0.82128 PFR

4 0.81867 PFR + CSTR
5 0.82673 PFR + CSTR
6 0.81400 CSTR + PFR

The nonisothermal Van de Vusse example, case 2, has several local optimum solutions
obtained by using various starting points. The solutions obtained are listed in Table 17.

The sulfur dioxide oxidation reaction also exhibits several local optimal solutions. Besides
the solution provided, there also is a trivial solution where no reaction takes place. The size
of the reactors is zero, no preheating takes place, and the objective value is zero.

6 Conclusions

A new superstructure-based approach for addressing the synthesis of optimal reactor net-
works has been proposed. By using CSTRs and CFRs as the fundamental units in the
superstructure, a sufficiently rich representation of alternatives is maintained. The differ-
ential modeling of the superstructure leads to a relatively simple problem formulation in
comparison to previous superstructure based techniques. A control parameterization tech-
nique has been shown to be an effective way of solving the resulting dynamic optimization
problem. By using this approach, the DAEs are integrated explicitly and no approximation
is necessary.

The example problems demonstrate some of the key features of the proposed approach.
The breadth of problems addressed demonstrates the generality of the overall methodology
and effectiveness of the optimization strategy. The fact that improved solutions have been
obtained illustrates the importance of the differential modeling as well as the effectiveness
of the numerical procedure. A relatively simple superstructure including a single CFR and
CSTR was able to achieve the solutions. The individual scaling of the control intervals
was shown to provide improved solutions when compared to the equal scaling of the inter-
vals. Finally, the reactor networks could be directly determined from the solution of the
optimization problem.

MINOPT provides an excellent framework for modeling and solving the described prob-
lems. It allows for a succinct representation of the models and allows the user to quickly
and easily change the parameters of the problem to solve a different problem.

No binary variables are required in the general formulation since the existence of a reactors
and streams are determined by nonzero flowrates. However, certain situations such as fixed

cost requirements for reactor existence or lower bounds for reactor existence would require
binary variables for the modeling. This can be handled directly by MINOPT and such
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problems should be addressed in future work.
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8

Notation

Superscripts:

+ QO Q0 o9

o]

feed stream
CFR side feed
CFR main feed
CSTR feed
CFR main exit
CFR side exit
CSTR exit
product

CFR sidestream
CFR internal
CRR side exit

Subscripts:

]

S o~ .

i

index for components set
index for reactions set J
index for CFRs set K
index for CSTRs set L
index for feeds set R

index for products set P

Variables:

~

TR R INHTORNDOOAC

C

o

SIS

concentration [gmol/L)]
concentration [gmol/L)]
molar heat capacity [J/(mol K)]
volumetric flowrate [L/s]
total molar enthalpy [J]
pressure [atm]

energy flowrate [J/s]
reaction rate [mol/(L sec)]
temperature [K]

volume [L]

mole fraction

density [mol/L]

space time [s]

nstants:

gas constant

rate constant

Arrhenius parameter
Arrhenius parameter
stoichiometric constants
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A Constant Density Formulation

The model given in Section 2.2 is for general situations and the closure relations for the
state equations are not given. The specific closure relations that should be applied vary
from problem to problem. In certain cases, assumptions can be made that will simplify the
closure relations and the overall model representation.

One assumption that can be applied to many problems is the constant density assump-
tion. This assumption eliminates the need for an equation of state for the density and implies
that volume is conserved. Along with the constant density assumption, the heat capacity is
assumed to be the same for all the components and constant in temperature. The enthalpy
is expressed as

dh;
dT

=C

where C is the heat capacity.
Applying these assumptions to the general model, the following equations are obtained:

e feed splitter

Fr=) FR+F5+) Fi VreR

keK leL

e CFR sidestream mixers

Fp=)"F%+ Y F+F+> Ff VkeK

TER k'eK leL

b = Z o Foh + Z cf ey + ci,,iF,f,',’k + Z cg{iﬂfj}; Viel VkeK
réR k'eK leL

TRFp =Y T'F% + Y TEFd + TLFY + ) TPFY, Vke K
reR kK eK leL

e CFR main mixers

Fe=Y Fu+ Y Fe+Fl+) F VkeK

TER k'eK lel

g FE=Y e+ e F el Fl+ Y i F Yiel Vke K
r€ER kKeK leL

TeFg =Y TPFS+ Y TaFE + TLFS + ) T/F VkeK

TE€ER kK'eK leL
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e CSTR feed mixers

FP=>"FH+> F+F{+Y Fy Viel

r€ER keEK l'eL

= Pt N o Bt o FIO4 Sl B Viel Viel

TER keK l'eL

TR =Y TeFY + Y TeFS + TR+ TiF, viel

r€ER keK l'eL

CSTR total balance

Ff=F' VielL

CSTR component balances

Fid, = c“—i-VmZerl] Viel Viel

JjeJ

e CSTR energy balance

pCFITY = pCFT + V™Y AHpn - QF VieL

jedJ

CSTR Reaction Rates

riy = fi;(dnT") Vied Viel

CFR total balance

AR, __dF _dFy

w_ e db K
- Ay ay k€

CFR component balance

dct dF}
t kyl S
= = () + DY wigrk, Vi€l VkeK
dv dv =
e CFR energy balance
~ . dT? R dF? dOt
pCFi—t = —pC(T} = TH =L + Y AHpl  +—% Vke K
av dv I av
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e Leaving Sidestream

dc%,i _
dv

dFy
(ki — 021)7’“ Viel Vke K

Fy

dT?y dF?
Fpk = @t -k

Vk e K
av

e Initial conditions (V = 0)

FP=F VkeK
Cri = cZ,i Viel Vke K

Ti=T) VkeK

Fl=F° VkeK

i=c, Viel VkeK

st st

TE=T¢ Vke K

e Point constraints (V = 1)

Ff=F! Vke K
Gi=¢,; Viel YkekK

Te=T VkekK

F/=F VkekK
o,=c; Viel VkeK
T/ =T VkeK
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CFR Reaction Rates

i =Tei(cnTy) VieJ VkeK
e CFR main splitters

Fg=> Fh+FS+ Y F+> Fh VkeK

k'eK leL peP

CFR side exit splitters

FI =Y FL, +FL+> Fl{+> F Vkek

k'eK lel peP

CSTR product splitters

F=) F+Fi+) Fi+) Ry Vel

keEK l'eL peEP

product mixer

S DLTRES S

keEK leL

Z Fehet  + thc,”—i—Z:thcfZ Viel VpeP

kEK lel

FMr =" FTe+ FIMT 4+ F*T9 WpeP

kEK leL

B Ideal Gas Formulation

Another assumption that is applicable to numerous problems is the ideal gas assumption.
The equation of state is the ideal gas law:

P = pRT

The ideal gas heat capacity is given as a polynomial function of temperature:

N
Ci: E an’iT”’I
n=1

A convenient set of variables for this case are the total molar flowrates, IV, and mole fractions,
;.
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feed splitter

=D N+ N +Y N vreRr

keK leL

e CFR main outlet splitter

Nf= )" Nb 4+ N+ Ngi+ ) Nh Vke K

KeK 1L peP

CFR side outlet splitter

N/ = Z N,ﬁi,+N,f,2,+ZN,i‘f+ZN,f,’; Vk € K

KeK leL peP

CSTR outlet splitter

N/ =) NI A NS A+D NG+ N Vel

keK el peEP

CFR side feed mixers

Ny =) NS+ N+ NP+ NSy VEe K

TER kKeK leL

= a8 NS+ > af N+l N+ 2l N Viel Vke K

TeER kK'eK leL

Zh’kzxkz Zzh’rz r

i€l reRicl
+ 3 (kg wE NG + hf,7ia:£N,§’fk) + K aINfy Viel VkeK
k'eK el leL el
N
i b (n—1) ho
hgﬂ.:Z%JrTg Viel VkeK
n=1 n k

e CFR main feed mixers

=) NM%+ Y N+ N+ Y N VEeK
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