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Abstract: A mixed-integer optimal control framework for analyzing the interaction
of process synthesis, design, and control is presented in this paper. The approach
integrates the economic design and dynamic controllability into a multiobjective
Mixed-Integer Optimal Control Problem (MIOCP). The problem formulation in-
cludes dynamic models and incorporates both discrete and continuous decisions. An
algorithm for the solution of the MIOCP is developed based on the principles of
Generalized Benders Decomposition for mixed-integer nonlinear optimization. The
algorithm is used to determine the trade-offs between the economic design and
dynamic controllability of a reactor-separator-recycle system. Copyright ©)1998 IFAC
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1. INTRODUCTION

An important issue in the area of process syn-
thesis, design, and control is the solution of opti-
mization problems which involve dynamic models
along with discrete decisions. This type of problem
arises in analyzing the interaction of the design
and control of a process. Discrete decisions are
used to indicate the existence of units in the
process while dynamic modeling is necessary for
the design of the control system.

Traditional approaches to process design and con-
trol separate the two by handling them sequen-
tially. First, an optimal steady-state process de-
sign is determined and then a control strategies
are applied to maintain the process at the speci-
fied stead-state. This neglects the well-established
notion that the controllability of the process is an
inherent characteristic of its design.

In order to address this limitation, the controlla-
bility of the process should be considered at the
early stages of the design of the process. This is
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handled by using an integrated approach to design
and control with the the following features:

¢ simultaneous consideration of controllability
and economic criteria of the process at the
early stages

e incorporation of the dynamic operation of
the process

The interaction of design and control has been
addressed in previous work, and Morari and
Perkins (1994) provide a review of the various
design/control methodologies. Noting that a great
amount of effort has been placed on the assess-
ment of controllability, particularly for linear dy-
namic models, they indicate that very little has
been published on algorithmic approaches for de-
termination of process designs where economics
and controllability are traded off systematically.
Control structure selection issues are addressed in
Narraway and Perkins (1993b) and Narraway and
Perkins (1993a) to assess the economics associ-
ated with the process dynamics. A multiobjective
approach was presented by Luyben and Floudas
(1994a) and Luyben and Floudas (1994b) where



both design and control aspects are incorporated
into a process synthesis framework. The work of
Bahri et al. (1996) and Figueroa et al. (1996)
proposed a method for determining the economic
penalty associated with maintaining feasible op-
eration for a given set of uncertainties and dis-
turbances. The problem of optimal design of dy-
namic systems under uncertainty is addressed in
Mohideen et al. (1996) where both flexibility and
controllability issues are considered.

The previous work either did not include the
process synthesis issues or did not include the
dynamic operation of the process. This work fo-
cuses on a process synthesis framework where
both structural decisions and dynamic models are
included.

2. INTERACTION OF PROCESS
SYNTHESIS, DESIGN, AND CONTROL

The objective is to determine the process struc-
ture, operating conditions, controller structure,
and tuning parameters which optimize both the
economics and controllability of the process and
guarantee feasible operation.

The problem is formulated by modeling the pos-
tulated superstructure of process alternatives of
interest. Since the dynamic operation of the pro-
cess is being considered the process is modeled
dynamically which gives rise to a system of differ-
ential and algebraic equations (DAEs).

The problem considered has the following general
formulation:
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where z1(t) is a vector of n dynamic variables
whose time derivatives, 21(t), appear explicitly,
and z»(t) is a vector of m dynamic variables whose
time derivatives do not appear explicitly, « is a
vector of p time invariant continuous variables, y
is a vector of ¢ binary variables, and u(t) is a
vector of r control variables. Time ¢ is the inde-
pendent variable for the DAE system where tq is
the fixed initial time, ¢; are time instances, and tn
is the final time. The DAE system is represented

by fi, the n differential equations, and f,, the m
dynamic algebraic equations. The constraints h'
and ¢’ are point constraints where ¢; represents
the time instance at which the constraint is en-
forced and A" and g" are general constraints.

The initial condition for the above system is de-
termined by specifying n of the 2n 4+ m variables
Zl(to),ﬁl(to),ZQ(to). For DAE systems with in-
dex 0 or 1, the remaining n + m values can be
determined. In this work, DAE systems of index
0 or 1 are considered and the initial conditions for
z1(t) and z5(t) are z{ and 2§ respectively.

Two points about this formulation should be
noted. First the y variables appear in the DAE
system as well as in the point constraints and
general constraints. Second, the objective function
J is a vector of two objectives representing the
economic and controllability objectives. The for-
mulation is classified as a multiobjective Mixed
Integer Optimal Control Problem (MIOCP).

3. ALGORITHMIC FRAMEWORK FOR THE
INTERACTION OF SYNTHESIS, DESIGN,
AND CONTROL

There are three characteristics which complicate
the solution of the Multiobjective MIOCP for-
mulation: the multiobjective nature, the optimal
control problem, and the mixed integer aspects.
By addressing each aspect, subproblems that are
easier to solve than the original problem are for-
mulated.

3.1 Multiobjective Optimization

In order to handle the multiobjective nature in
this problem, the e-constraint method is used to
generate a pareto-optimal solution. This noninfe-
rior solution set is the set of solutions where one
objective can be improved only at the expense of
the other. thus indicate the trade-offs between the
two objectives.

The use of the e-constraint method reduces the
multiobjective problem to successive solutions of
single objective problems. Consider the vector of
objective functions J = (Jy,J2) where J; rep-
resents a design objective and J> a controllabil-
ity objective. The application of the e constraint
method to this two objective problem leads to the
following formulation:

The € constraint involving J» becomes a point con-
straint in the problem and is included in the con-
straints h'. Thus the original problem formulation
has been reduced to a single objective problem
which must be solved multiple times with varying
values of € to generate the noninferior solution set.



3.2 Solution of the Optimal Control Problem

The solution of the optimal control problem can
be handled in several ways: complete discretiza-
tion, solution of the necessary conditions, dynamic
programming, and control parameterization. The
current practice for solving the optimal control
problem when it is part of a mixed-integer prob-
lem is to use complete discretization to convert
the problem to a large scale MINLP. The problem
with this method is that the size of the problem
grows dramatically with the number of DAEs in
the problem.

This work focuses on the control parameterization
techniques which parameterize only the control
variables u(t) in terms of time invariant parame-
ters. At each step of the optimization procedure,
the DAEs are solved for given values of the deci-
sion variables and a feasible path for z(t) is ob-
tained. This solution is used to evaluate the objec-
tive function and remaining constraints. The con-
trol parameterization can either be open loop as
described in Vassiliadis et al. (1994) or closed-loop
such as that described in Narraway and Perkins
(1993b) and Narraway and Perkins (1993a) which
also includes the control structure selection. By
applying the control parameterization, the control
variables u(t) are converted to dynamic state vari-
ables z(t) and the parameters for the control are
added to the set of time invariant decision variable
x. The following problem results:
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3.3 MINLP/DAE Solution Algorithm

The strategy for solving the MINLP/DAE is
to apply iterative decomposition strategies simi-
lar to standard MINLP algorithms. An overview
of MINLP algorithms and extensive theoretical,
algorithmic, and applications-oriented descrip-
tions of these algorithms are found in Floudas
(1995). The MINLP/DAE algorithmic develop-
ment closely follows the developments of Gener-
alized Benders Decomposition with appropriate
extensions for the DAE system.

3.3.1. Primal Problem

The primal problem is obtained by fixing the y
variables and its solution provides an upper bound
on the solution of the MINLP/DAE. For fixed
values of y = y*, the MINLP/DAE becomes an
NLP/DAE.

The NLP/DAE problem is solved using a para-
metric method where the DAE system is solved as
a function of the x variables. The solution of the
DAE system is achieved through an integration
routine which returns the values of the z variables
at the time instances, z(t;), along with their sen-
sitivities with respect to the parameters, g—;(ti).
The resulting problem is an NLP optimization
over the space of @ variables which has the form:
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s.t. hl(zl(ti),zl(ti);ZZ(ti)7w7yk
g'(21(t:), 21 (t:), z2(t:), T, "
h'(xz,y
gll(w’y
X
[to, PR ,tN]
0...N

B

IAN A

~—~
w
g

k

o oCcoo

x
t;
7

I Mm m

where the variables 2;(t;), z1(t;), and 2z3(t;) are
determined through the solution of the DAE sys-
tem by integration:

F1(Z1(t), 21(t), 22(t), z, y*,t) = 0
Faler(®, 2200 =0

z1(to) = 29

za(to) = 25

The functions J(-), g'(-), and h'(:) are functions
of z(t;) which are implicit functions of the x vari-
ables through the integration of the DAE system.
For the solution of the NLP the objective and
constraints evaluations along with their gradients
with respect to x.are required. These are evalu-
ated directly for the constraints g" (z) and h" (z).
However, for the functions J(-), g'(-), and h'(-),
the values z(t;), and the gradients 42 (¢;) returned
from the integration are used. The functions J(-),
g'(-), and h'(-) are evaluated directly and the
gradients j—i, 'Zfé, ‘fi—':
the chain rule:

a1 _ (01 (02 (97

de \0z) \Ox ox
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de \ 0z ox ox
Standard gradient based optimization techniques
can be applied to solve this problem as an NLP.

The solution of this problem provides values of the
x variables and trajectories for z(t).

and

are evaluated by using




Table 1. Primal constraints and
corresponding dual variables

constraint  dual variable
f1 vi(t)
£ va(t)
gl l"”
n' by
1 IJ'”
hll AII

3.3.2. Master Problem

The master problem is formulated using dual in-
formation and the solution of the primal problem.
Provided that the y variables participate linearly,
the problem is an MILP whose solution provides
a lower bound and y variables for the next primal
problem. Dual information is required from all of
the constraints including the DAEs whose dual
variables, or adjoint variables, are dynamic. The
constraints and their corresponding dual variables
are listed in Table 1.

The dual variables p', X', u'’, and A" are gener-
ally obtained from the solution technique for the
primal problem. Dual information from the DAE
system is obtained by solving the adjoint prob-
lem for the DAE system which has the following
formulation:

p = (ﬁ)Tulm

dz,
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This is a set of DAEs where the solutions for
‘;Tf;, %, %, 37’2, and % are known functions
of time obtained from the solution of the primal
problem. The variables v (t) and v»(t) are the ad-
joint variables and the solution of this problem is
a backward integration in time with the following

final time conditions:
df, )"
dz
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(7)

1221 (tN) =

Thus, the Lagrange multipliers for the end-time
constraints are used as the final time conditions
for the adjoint problem and are not included in
the master problem formulation.

The master problem is formulated using the so-
lution of the primal problem, * and z*(¢) along
with the dual information, g%, A%, and v*(t).
The master problem has the following form:

min p
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The integral term can be evaluated since the pro-
files for z*(t) and v*(t) both are fixed and known.
Note that this formulation has no restrictions on
whether or not y variables participate in the the
DAE system.

4. NUMERICAL PROCEDURE

The solution algorithm for the MINLP/DAE
has been implemented in the program MINOPT
(Schweiger and Floudas, 1997) (Mixed Integer
Nonlinear OPTimizer) which has been developed
as a unified framework for the solution of vari-
ous classes of optimization problems. MINOPT
features a front-end parser which allows for the
concise problem representation. MINOPT imple-
ments a broad range of solution algorithms for
handling linear programs, mixed integer linear
programs, nonlinear programs, mixed integer non-
linear programs, and problems involving dynamic
models. For the solution of the NLP/DAE prob-
lems, MINOPT incorporates NPSOL (Gill et al.,
1986) (SQP). For the solution of the DAE system
and sensitivity analysis, MINOPT uses DASOLV
(Jarvis and Pantelides, 1992) which is an im-
plementation of a backwards difference formula
algorithm for large sparse DAEs. For the solution
of the MILP problems, CPLEX (CPL, 1995) is
used.

5. EXAMPLE:
REACTOR-SEPARATOR-RECYCLE SYSTEM

The example problem considered here is the de-
sign of a process involving a reaction step, a sepa-
ration step, and a recycle loop is considered. Fresh
feed containing A and B flow into a an isothermal
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Fig. 1. Superstructure for Reactor-Separator-Recycle system

reactor where the first order irreversible reaction
A — B takes place. The product is from the
reactor is sent to a distillation column where the
unreacted A is separated from the product B and
sent back to the reactor. The superstructure is
shown in Figure 1.

The model equations for the reactor (CSTR) and
the separator (ideal binary distillation column)
can be found in Luyben (1990). The specific
problem design follows the work in Luyben and
Floudas (1994b).

For this problem, the single output is the product
composition. The bottoms (product) composition
is controlled by the vapor boil-up and the distillate
composition is controlled by the reflux rate. Since
only the product composition is specified, the
distillate composition set-point is free and left to
be determined through the optimization.

The cost function includes column and reactor
capital and utility costs.

COStreactor = 17639Di'066(2Dr)0'802

COSteolumn = 6802D%-0%6(2.4V,)0-802
+548.8DL-5° N,

COStexchangers = 193023‘/.3565

costytilities = 12420V

1
cOoStiotal = —5—[COStreactor + COSteolumn

ﬁpay

+COStexchangers] + /Btax [COStutilities]
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Fig. 2. Noninferior solution set for the Reactor—
Separator—Recycle System

Table 2. Results for three designs

Solution A B C
Cost ($) 489,000 534,000 736,000
Capital Cost ($) 321,000 364,000 726,000
Utility Cost ($) 168,000 170,000 10,000
ISE 0.0160  0.00379 0.0011
Trays 19 8 1
Feed 19 8 1
V- (kmol) 2057.9 3601.2 15000
V (kmol/hr) 138.94 141.25 85.473
Ky 90.94 80.68 87.40
Ty (hr) 0.295 0.0898 0.0156

The controllability measure is the time weighted
ISE of the product composition:

du _

* \2
dt )

t(xp —zh

The noninferior solution set is shown in Figure 2
and the results for three of the designs are shown
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Fig. 3. Dynamic responses of product composi-
tions for three designs

in Table 2. All of the designs in the noninferior
solution set are strippers. Since the feed enters
at the top of the column, there is no reflux and
thus no control loop for the distillate composition.
The controllability of the process is increased by
increasing the size of the reactor and decreasing
the size of the column. The most controllable
design has a large reactor and a single flash unit.
The dynamic responses for the three designs are
shown in Figure 3. The most economic design (A)
has more prominent oscillations in comparison to
the most controllable design.

6. CONCLUSIONS

This work presents a method for systematically
analyzing the interaction of process synthesis, de-
sign, and control. The principal characteristic of
the problem is the existence of both discrete de-
cisions and dynamic models. The application of
the process synthesis framework leads to multi-
objective mixed-integer optimal control problem.
By applying the proposed solution algorithm, the
trade-offs between economic design and dynamic
controllability are determined. This is demon-
strated in the reactor-separator-recycle design ex-
ample.

The proposed approach has been applied by con-
sidering a single disturbance. Although the feed-
back control can be robust, the resulting solution
is likely to be specific to the proposed disturbance.
The approach also does not consider uncertainty
in the process that may arise due to variation in
external variables or internal parameters. Further
work should address both of these issues involving
the ideas of robust control and flexibility analysis.
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