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Abstract—The synthesis of optimal reactor networks using a superstructure based approach is considered.
The fundamental units in the superstructure are the continuous stirred tank reactor (CSTR) and a cross
flow reactor (CFR). The mathematical modeling leads to an optimal control formulation which is solved
using a control parameterization technique. The approach is applicable to general reaction mechanisms and
is applied to a complex nonisothermal reaction problem.

INTRODUCTION

The goal of reactor network synthesis is to deter-
mine the types, sizes, and operating conditions of the
reactor units as well as the interconnections among
them which transform the given raw materials into
the desired products. Previous approaches for ad-
dressing this problem can be classified as either su-
perstructure based methods or targeting methods.
The superstructure based methods employ a fixed
reactor network which includes all the possible net-
works of interest. This approach was first intro-
duced by Jackson (1968) who postulated a network
of parallel plug flow reactors (PFRs) interconnected
with sidestreams. Further developments were made
by Achenie and Biegler (1986, 1990) where nonlin-
ear programming techniques were used to solve the
problem. A reactor network superstructure incorpo-
rating continuous stirred tank reactors (CSTRs) and
PFRs with various interconnections was considered
by Kokossis and Floudas (1990, 1991, 1994). The
PFRs were approximated by a series of equal-sized
sub-CSTRS and integer variables were used to rep-
resent the existence of the reactor units. The result-
ing formulation was a large-scale, complex, noncon-
vex mixed-integer nonlinear program (MINLP).

One of the limitations of the superstructure ap-
proach is that the solution obtained is only as rich as
the proposed superstructure. Increasing the richness
comes at the cost of increasing the complexity of the
model. To address this issue, targeting approaches
were developed based on the attainable region con-
cept first introduced by Horn (1964). The attainable
region is the set of all possible conditions that can be
obtained through reaction and mixing. These meth-
ods determine a target on the performance index for
the reactor network regardless of the reactor types
and configuration. These techniques were explored as
geometric problems by Glasser et al. (1987), Hilde-
brandt et al. (1990), and Hildebrandt and Glasser
(1990). Mathematical programming techniques for
the targeting approach were explored by Balakrishna
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and Biegler (1992a,b).

This work focuses on addressing two disadvan-
tages of the superstructure based approaches: the
large, complex formulations and the approximation
of the PFR by algebraic models. The PFR is
modeled using differential equations and differential
sidestreams are used to enhance the richness of the
superstructure. The mathematical modeling leads to
an optimal control problem which is solved using a
control parameterization technique.

REACTOR NETWORK
SUPERSTRUCTURE

The reactor network superstructure must be suffi-
ciently rich without becoming unnecessarily compli-
cated. Feinberg and Hildebrandt (1997) showed that
the only reactor types that are required to achieve
all possible compositions for a given reaction are
the PFR, CSTR, and differential sidestream reac-
tor. Thus, the reactor network design is a question
of how to incorporate traditional reactors and not a
speculation of alternative devices. The fundamental
reactor units considered are the CSTR and a cross
flow reactor (CFR) unit. The CFR shown in Fig-
ure 1 is a PFR with differential entering and leav-
ing sidestreams. The reactor network superstructure
consists of the CSTR and CFR units along with mix-
ers and splitters and is based on the principles dis-
cussed in Floudas (1995) and Schweiger and Floudas
(1998).
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Figure 1. Cross Flow Reactor



The mathematical model for the superstructure
includes the material and energy balances for all of
the units in the superstructure. Algebraic relation-
ships are derived for the CSTRs, mixers, and split-
ters. However, differential equations are required for
the CFR, and the overall formulation is a system of
differential and algebraic equations (DAEs).

The superstructure and model are developed for
general situations. Although no constant density or
ideal gas assumptions need to be made, some closure
relationship is required to fully specify the model.
The reaction information is supplied in terms of the
stoichiometric matrix for the independent set of reac-
tions (v;;) and the rate of reaction j (r; = fJ(c;, T)).
This expression can have forms based on power laws
or Langmuir-Hinshelwood kinetics and the tempera-
ture dependence is usually described by the Arrhe-
nius law. The rate of production or consumption of
species ¢ is given by the product of v;; and r;.

For the modeling of the CFR, the assumptions
made are steady on-dimensional flow, instantaneous
mixing of the sidestreams, and no axial diffusion. The
material balance is
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where c’}c ; is the molar concentration of species
b

within reactor k, cf; are the molar concentration

in the feed sidestream, and F} is the reactor volu-

metric flowrate. The differentials F’“ and ’ﬁ} are
the differential flows from the feed 51destream and to
the exit sidestream. By permitting differential heat-

ing/cooling along the CFR, the energy balance is

dv av ~ Ry Ty
where H! and p! are the molar enthalpy and mo-

lar density within reactor k, and H}} and p; are the
enthalpy and density of the side feed stream. The
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t
differential % is the heat flow rate into the reactor.
The initial conditions for these equations are the
feed conditions to the CFR:
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The exit conditions of the CFR are matched to the
outlet stream through constraints imposed when V' =
Vi
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To fully specify the model, closure relations are
required to determine the enthalpy and density of
the various streams in the model. These equations of
state are generally functions pressure, temperature,
and composition. A detailed presentation of the mod-
eling of the superstructure in provided in Schweiger
and Floudas (1998).

OPTIMAL CONTROL SOLUTION
FRAMEWORK

By selecting a number of dynamic variables equal to
the number of degrees of freedom for the dynamic
problem, an optimal control formulation results:
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where J is the objective function, f are the DAEs, ¢
are the initial conditions, g’ and h' are the point con-
straints, and g"” and h" are the time-invariant con-
straints. The variables in the problem are dynamic,
z, time invariant, &, and control variables, . The in-
dependent variable is ¢t which corresponds to the vol-
umetric position along the reactor (V). The control
variables selected are the sidestream flowrates and
the CFR temperature which are to be determined as
functions of the position along the reactor.

The optimal control problem is solved using a
control parameterization approach that converts the
problem to a nonlinear program (NLP) where the
DAEs are decoupled from the optimization. This ap-
proach is described in Vassiliadis et al. (1994). Al-
though the solution of the DAEs con be computa-
tionally expensive, by decoupling them from the opti-
mization problem, the algorithm utilizes the features
of integration techniques. The integrators automat-
ically adjust the number of steps and their size and
are well-suited for handling complex, stiff DAEs.

The control variables, u, are expressed as func-
tions of the independent variable, V', and time invari-
ant parameters. A convenient choice for the parame-
terization function is a Lagrange polynomial. These
are interpolating polynomials where the parameters
determine the shape of the control variable profile
and become optimization variables for the NLP prob-
lem. The time horizon is divided into intervals with
the controls defined as polynomials over each inter-
val. This allows for piecewise constant expressions,
piecewise linear, piecewise quadratic, etc.

By applying the control parameterization, the
control variables are eliminated from the problem at
the expense of additional DAEs for the control pa-
rameterization equations and additional time invari-
ant variables, x, for the control parameters. The re-
sulting problem is an NLP in the space of the time
invariant variables, @ where the objective and point
constraints are implicit functions through the inte-
gration of the DAE system. The function evaluations
and gradients with respect to x are required for J,



k', g', ", and g". For h", and g¢", analytical ex-
pressions can be obtained. However, for J, h', g the
function evaluations and gradients are determined as
implicit functions of x through the solution of the
DAE system. Integrating the DAE system along with
the variational equations provides the values of the
state variables at the time instances, 2(t;), as well as
the gradients (‘f—;. With this information known, the
functions J, g', and h' are evaluated directly, and the
gradients are determined by applying the chain rule:
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In the reactor network synthesis problem the re-
actor volume needs to be optimized. This volume is
determined by the limits on the integration which are
fixed in the control parameterization approach. To
allow the volume to vary, the independent variable
is scaled and the integration is performed over this
scaled variable. The scaling factor becomes a vari-
able which can be optimized. For example, consider
the differential equation

(6)

% =f(z,x)

The variable ¢t can be scaled using the relation

t=r1t

where £ is the scaled time and 7 is the scaling factor.
Substituting this into the differential equation results
in

dz

E = Tf(z,.%‘)

where 7 is now a variable for the optimization. By
choosing the limits of the scaled time in an interval to
be 0 and 1, the scaling parameter becomes the true
size of the integration horizon, which is the volume of
the CFR. Scaling factors, ; are introduced to allow
the size of the each interval to vary. If the scaled size
of each interval is one, then the true total size is the
sum of the scale factors for each interval.

The solution methodology is implemented in the
software package MINOPT (Schweiger and Floudas,
1997) which is a modeling language and algorithmic
framework for mathematical optimization. MINOPT
is capable of handling dynamic, time-invariant, and
integer variables along with linear, nonlinear, dy-
namic, and point constraints. Thus MINOPT can
address a wide variety of mathematical programming
problems including optimal control problems as well
as mixed-integer optimal control problems.

COMPUTATIONAL STUDY:
METHANE CONVERSION TO
ACETYLENE

The proposed approach has been applied to numerous
examples ranging from the simpler constant density
isothermal and nonisothermal mechanisms involv-
ing three reactions to complex nonisothermal mech-
anisms involving many species and reactions.

This example considers the complex nonisother-
mal gas phase reaction for the conversion of methane
to acetylene. The mechanism involves 36 reactions
and 19 species. Hydrogen is provided as a feed along
with the methane for use in minimizing the forma-
tion of carbon in the reactors. The main products
are ethylene, acetylene, hydrogen, and benzene which
leads to the formation of carbon. The objective is to
maximize the production of acetylene while minimiz-
ing the production of benzene.

The reaction mechanism and kinetic constants are
taken from Olsvik et al. (1995). The reaction takes
place in the gas phase and ideal gas assumptions are
made with the pressure constant at 1 atm. All of the
kinetic and thermodynamic data for the problem are
obtained through a connection to the Chemkin pack-
age (Kee et al., 1996). The desired mass fraction of
acetylene in the product stream is 0.7 and the mass
fractions of the other products are to be minimized.
This is reflected in the following objective function:

1000(yc, 7, — 0712 + 7(yCH,CHCCH)®
+5(yc,H,)” +10(yc,1,)?

The optimal solution is found to be a CFR with
hydrogen fed both to the main feed and along the
side of the reactor as shown in Figure 2. The feed
temperature is constrained to be less than 1300°K.
Since high temperatures are required for any signifi-
cant conversion, a sharply rising temperature profile
is required as shown in Figure 3. The composition
profiles are shown in Figure 4.

CONCLUSIONS

The reactor network synthesis problem has been ad-
dressed by using a superstructure consisting of CSTR
and CFR units. The proposed approach has a suffi-
ciently rich representation of alternatives yet the dif-
ferential modeling leads to a relatively simple model
formulation in comparison to previous superstruc-
ture based approaches. The resulting optimal control
formulation is solved using control parameterization
technique in which the DAEs are integrated explicitly
and no approximation is made.

The example problem demonstrates the generality
of the approach and the improved results over previ-
ous work demonstrates the effectiveness of the overall
methodology. MINOPT provides an excellent frame-
work for the modeling and solution of the problem as
well as the interpretation of the results.
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Figure 2. Reactor network solution for the methane
conversion example.
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Figure 3. Temperature profiles for the methane
conversion solution.
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Figure 4. Composition profiles for the methane
conversion solution.
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