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Abstract

Process design is usually approached by considering the steady-state
performance of the process based on an economic objective. Only
after the process design is determined are the operability aspects of
the process considered. This sequential treatment of the process de-
sign problem neglects the fact that the dynamic controllability of the
process is an inherent property of its design. This work considers a
systematic approach where the interaction between the steady-state
design and the dynamic controllability is analyzed by simultaneously
considering both economic and controllability criteria. This method
follows a process synthesis approach where a process superstructure is
used to represent the set of structural alternatives. This superstruc-
ture is modeled mathematically by a set of differential and algebraic
equations which contains both continuous and integer variables. Two
objectives representing the steady-state design and dynamic controlla-
bility of the process are considered. The problem formulation thus is
a multiobjective Mixed Integer Optimal Control Problem (MIOCP).
The multiobjective problem is solved using an e-constraint method to
determine the noninferior solution set which indicates the trade-offs
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between the design and controllability of the process. The (MIOCP)
is transformed to a Mixed Integer Nonlinear Program with Differen-
tial and Algebraic Constraints (MINLP/DAE) by applying a control
parameterization technique. An algorithm which extends the concepts
of MINLP algorithms to handle dynamic systems is presented for the
solution of the MINLP /DAE problem. The MINLP/DAE solution al-
gorithm decomposes the problem into a NLP/DAE primal and MILP
master problems which provide upper and lower bounds on the so-
lution of the problem. The MINLP/DAE algorithm is implemented
in the framework MINOPT which is used as the computational tool
for the analysis of the interaction of design and control. The solu-
tion of the MINLP/DAE problems is repeated with varying values of
€ to generated the noninferior solution set. The proposed approach
is applied to three design/control examples: a reactor network in-
volving two CSTRs, an ideal binary distillation column, and a reac-
tor/separator/recycle system. The results of these design examples
quantitatively illustrate the trade-offs between the steady-state eco-
nomic and dynamic controllability objectives.

Keywords: Mixed Integer Nonlinear Optimization, Parametric Opti-
mal Control.

1 Introduction

Chemical processes are generally designed to operate at a steady-state which
has been determined to be economically optimal. The ever-changing envi-
ronment tends to drive the operation of the process away from this steady-
state design thus having an adverse effect on the economic operation of the
process. A process design which is optimal at steady-state may not be op-
timal in light of the changes it may face. Therefore, the operability of the
process or its ability to adapt to a changing environment is an important
quality of the process which must be considered.

The traditional approach to handling operational issues is to deal with
them sequentially with the process design. First, the process is designed to
be economically optimal using a fully specified nominal case. Then, after
the process is designed, the operability aspects are considered which may
include control system design, reliability, and flexibility design issues.

The sequential design approach leads to problems when the economics
are based solely on the steady-state operation of the process. The steady-



state design does not reflect the impact of the control system on the eco-
nomic operation nor the trade-offs between design and controllability. Thus,
a particular design may appear to be optimal with respect to its steady-state
economic operation, but due to poor operability characteristics, the plant
may not exhibit good economic operation over time. This may be due to
the production of material that is off specification or increased utility con-
sumption necessary to adapt to the changes in the process. Since operability
issues are ignored during the steady-state design of the process, the fact that
the operability issues affect the economics of the plant is neglected. Poor
operability is reflected in the economics of the process over time.

There are other incentives for including dynamic controllability aspects
of the process during the design phase. The operation of the process must
adhere to strict operational constraints due to tight restrictions on product
quality and strict environmental regulations. The process design must be
able to handle a fluctuating economy characterized by varying customer
demands. Industrial trends towards more highly integrated and complex
plants are leading to processes with interacting process units. For these
reasons, the dynamic effects of the process become more dominant and the
dynamic operation more important. Thus, a simultaneous design approach
which considers the operability and dynamic aspects of the process along
with economic aspects is necessary.

This work focuses on the integration of controllability into the design
phase of a process at the early stages of the design. This integrated approach
to design and control has the following features:

e simultaneous consideration of controllability and economic criteria of
the process at the early stages

e incorporation of the dynamic operation of the process

The need for assessing operability issues during the design phase has
been known for some time, but quantitative approaches for addressing the
problem are rather new. Morari and Perkins [17] provide a review of the
various design/control methodologies. Their work describes the process syn-
thesis problem and the concept of controllability emphasizing that the design
of a control system for a process is part of the overall design of the process.
They also state that the design of a process can effect the control perfor-
mance. They describe a number of techniques that address the assessment
of the controllability of a process. Noting that a great amount of effort
has been placed on the assessment of controllability, particularly for linear



dynamic models, they indicate that very little has been published on algo-
rithmic approaches for determination of process designs where economics
and controllability are traded off systematically.

In order to deal with the controllabilty issues on a economic level, Nar-
raway et al. [19] presented the back-off method which determines the eco-
nomics associated with the process dynamics. In this method the optimal
steady-state is determined and then the economic penalty associated with
backing away from this point to maintain feasible operation and accom-
modate disturbances is determined. The method is further developed by
Narraway and Perkins [20] where the control structure selection problem is
analyzed. Perfect control assumptions are used along with a linearized model
to formulate a mixed integer linear program where the integer variables in-
dicate the pairings between the manipulated and controlled variables.

Brengel and Seider [2] present an approach for determining process de-
signs which are both steady-state and operationally optimal. The control-
lability of potential designs are evaluated along with their economic per-
formance by incorporating a model predictive control algorithm into the
process design optimization algorithm. This coordinated approach uses an
objective function which is a weighted sum of economic and controllability
measures.

Luyben and Floudas [14, 15] used a multiobjective approach to simul-
taneously consider both controllability and economic aspects of the design.
In this framework, the tradeoffs between various open-loop controllability
measures and the economics of the process can be observed. This approach
incorporates both design and control aspects into a process synthesis frame-
work and is the only approach which addresses the synthesis issues. Through
the application of multiobjective techniques, a process design which is both
economic and controllable is determined.

A screening approach was proposed by Elliott and Luyben [6] where the
variability in the product quality is used to compare different steady-state
process designs. The dynamic controllability is measured economically by
calculating the amount of material produced that is off-specification and on-
specification. The on-specification material leads to profits while the off-spec
material results in costs for reworking or disposal.

Bahri et al. [1] also developed a backoff technique for the design of
steady-state and open-loop dynamic processes. Both uncertainties and dis-
turbances are considered for determining the amount of back-off. The ideas
are further developed by Figueroa et al. [7] where a recovery factor is defined
as the ratio of the amount of penalty recovered with control to the penalty



with no control. This ratio is then used to rank different control strategies.

The advantage of the back-off approaches is that they determine the cost
increase associated with moving to the back-off position which is attributed
to the uncertainties and disturbances. A limitation of this approach is that
it can lead to rather conservative designs since the worst case uncertainty
scenario is considered. Although the probability of the worst case uncer-
tainty occurring may not be high, this is the basis for the final design. Also,
the method has not been applied to the design/synthesis problem. A fixed
design is considered and then the back-off is considered as a modification of
this design.

Mohideen et al. [16] address the problem of optimal design of dynamic
systems under uncertainty. They incorporate flexibility aspects as well as
control design considerations simultaneously with the process design. The
algorithm is used to find the economic optimum which satisfies all of the
constraints for a given set of uncertainties and disturbances when the control
system is included.

Walsh and Perkins [25] outline the use of optimization as a tool for
the design/control problem. They note that the advances in computational
hardware and optimization tools has made it possible to solve the complex
problems that arise in design/control. Their assessment focuses on the con-
trol structure selection problem where the economic cost of a disturbance is
balanced against the performance of the controller.

This article presents a framework for analyzing the interaction of design
and control. In the following section, the problem statement is given which
outlines the characteristics of the problem. Section 3 discusses the mathe-
matical formulation for the interaction of design and control problem and
describes the types of variables and constraints employed in the problem. In
Section 4, the algorithmic framework for the solution of the interaction of
design and control problem is proposed. The various aspects of the frame-
work are addressed separately and an algorithmic procedure is presented.
Section 5 presents the framework, MINOPT, which is used as a computa-
tional tool for the solution of the design and control problem. Section 6
discusses the application of the proposed procedure to three example prob-
lems: a simple reactor network problem, a binary distillation problem, and
a reactor-separator-recycle problem.



2 Problem Statement

The interaction of design and control problem is posed within the process
synthesis framework. The following information is assumed to be given:

e A process superstructure indicating the set of design alternatives
e A mathematical model describing the process superstructure

e The sets of potential manipulated and controlled variables

e Desired levels for process outputs

e Set of control structure alternatives (control superstructure)

e Set of Disturbances

e Feasibility Constraints (path, point, etc.)

e Cost data (Capital and operating)

e Finite time horizon

The goal is to determine the process structure, operating conditions, con-
troller structure, and tuning parameters which optimize both the economics
and controllability of the process and guarantee feasible operation.

The problem has two objectives which measure the design and control-
lability of the process. Economic criteria are typically used to measure the
design of the process. These take the form of cost or profit expressions which
are functions of the variables of the design. The controllability measure for
the process is not as concrete nor as easy to ascertain. Although many mea-
sures exist for the controllability of linear systems (singular value, condition
number, relative gain array, and disturbance condition number), chemical
systems are generally nonlinear and there is a deficiency in controllability
measures for nonlinear systems. The traditional choice for a controllability
measure is the Integral Square Error (ISE); however, there are a number
of drawbacks in using such a measure. First, ISE is not of direct interest
in practice. It only reflects the dynamics of the measured variables and
neglects the dynamics of the unmeasured state variables. The ISE only
contains information about the area magnitude of the violations of the mea-
sured variables but neglects the magnitude of the violation of the outputs
along the trajectory. This drawback can be handled by incorporating path
constraints into the problem formulation.



Another drawback related to ISE as a controllability measure and the
control structure selection has to do with the selection of the control pa-
rameters. First, the search for optimal control parameters based on the ISE
objective exhibits multiple local optima. Second, there is no one to one
correspondence between the control structure and the ISE measure. Thus,
similar ISE measures may be obtained for entirely different structures by
adjusting the controller parameters. Therefore, different dynamic charac-
teristics of the process may not be reflected in the ISE.

Despite the problems associated with ISE, its usage does have a number
of positive aspects and meets the requirements of a controllability measure
for this work. First, it is easy to calculate and it can be determined directly
as part of the process model. It does reflect the dynamic performance of the
process in terms of the outputs of the process. Designs that exhibit poor
dynamic characteristics have larger ISE measures whereas better designs are
characterized by smaller ISE measures. As a dynamic performance criterion,
ISE encompasses the entire response of the process and not just an isolated
characteristic. Finally, ISE is a differentiable function which facilitates it
use in gradient based methods.

In the following section, the mathematical formulation is described. The
central point in this formulation is the inclusion of dynamic models.

3 General Mathematical Formulation of the Inter-
action of Design and Control Problem

The interaction of process synthesis and control problem is formulated by
first modeling the postulated superstructure of process alternatives of in-
terest. The controllabilty of the process deals with the dynamic operation
of the process, and this requires the introduction of dynamic models. The
dynamic modeling leads to a system of differential and algebraic equations
referred to as DAEs. The differential equations are used to model material
and energy balances while algebraic relations are used for relations such as
equilibrium expressions.

The mathematical formulation for this problem is characterized by dif-
ferent types of variables and constraints. The variables (listed in Table 1)
are divided into two categories: continuous and integer. The continuous
variables represent the flow rates, compositions, temperatures, equipment
sizes, etc. The integer variables (y) are used to represent the existence of
process units. The continuous variables are further categorized as design



Table 1: Variable definitions for problem formulation

v: Time Invariant Continuous Variables
y: Integer Variables

):  Dynamic State Variables

u(t): Dynamic Control Variables

t:  Time

t;:  Time instant

variables or time invariant decision variables (v), dynamic state variables
(2(t)), and control variables or time varying decision variables (w(t)). The
time invariant variables are those that represent design parameters such as
equipment size. The dynamic variables are those such as composition and
temperature which vary with time. The control variables represent quan-
tities that can be manipulated over time to maintain controlled variables
at prespecified levels. The controlled variables are a subset of the dynamic
variables which have a desired value or set-point.
The dynamic model for the process structure is modeled using DAEs:

fl(zl(t)’zl(t)’zQ(t)au(t)vvayat) =0 (1)
f2(z1(t)7ZQ(t)au(t)"U’y’t) =0 (2)
z1(to) = 29 (3)

22(to) = 23 (4)

where f; represents the n differential equations, f, represents the m dy-
namic algebraic equations, z1(t) is a vector of n dynamic variables whose
time derivatives, z1(t), appear explicitly, and z4(¢) is a vector of m dynamic
variables whose time derivatives do not appear explicitly. The variables v
and y are parameters for the DAE system and variables for the optimization
where v is a vector of p time invariant continuous variables and vy is a vector
of g binary variables. The control variables are represented by w(t) which is a
vector of 7 variables. Time ¢t is the independent variable for the DAE system
and t; is the fixed initial time. The initial condition for the above system
is determined by specifying n of the 2n + m variables z1(tg), 21 (o), z2(to)-
For DAE systems with index 0 or 1, the remaining n 4+ m values can be
determined. In this work, DAE systems of index 0 or 1 are considered and
the initial conditions for z1(t) and z2(t) are 2§ and 29 respectively.



The point constraints are the constraints involving the dynamic variables
at a specific time instance. They have the form

h'(21(t:), z1(t:), 22(t:), u(t:),v,y) = 0 (5)

gl(‘él(ti)azl(ti)aZQ(ti)’u(ti)av’y) <0 (6)

where #; represents the time instance at which the constraint is enforced.
The index % can have values from 0 to N where N is the number of time
instances necessary in the problem and ¢y is the final time.

There are also constraints which involve only the v and y variables:

h'(v,y) =0 (7)

9"(v,y) <0 (8)

With the constraint and variable definitions given, the interaction of
process synthesis and control problem has the following mathematical for-
mulation:

min J(il(ti), Zl(ti), ZQ(ti), 'u,(ti), v,

<

)
s.t. fl(‘él(t)azl(t)7z2(t)7u(t)avayat) =0
f2(zl(t)az2(t)au(t)avayat) = 0
zi(t) = 2%
zo(to) = 29
hl(zl(tz)azl(ti)azQ(tz)au(tz)avay) =0
gl(zl(t't)azl(ti)az2(t1)au(tl)avay) < 0 (9)
h'(v,y) = 0
g"(v,y) < 0
v € VCRP
y € {01}
t; € [to,t]\]]
1 = 0...N

In this formulation the objective function J is a vector and therefore
the problem is a multiobjective Mixed Integer Optimal Control Problem
(MIOCP). The next section discusses the development of an algorithmic
framework for addressing the solution of this problem.



4 Interaction of Design and Control Algorithmic
Framework

There are three characteristics which complicate the solution of the Multi-
objective Mixed Integer Optimal Control problem formulation. These are
the multiobjective nature, the optimal control problem, and the mixed in-
teger aspects. The algorithmic framework can be decomposed into three
steps which address each of these issues. First, the multiobjective nature is
addressed by applying the e-constraint technique which reduces the prob-
lem to a single objective optimization problem. The second step addresses
the optimal control aspects of the problem and involves the application of
control parameterization to the problem to reduce the infinite dimensional
programming problem to a finite dimensional programming problem. The
third step involves the solution of the mixed integer optimization problem
where the theoretical concepts for the solution of Mixed Integer Nonlinear
Programming problems are extended to the solution of problems involving
dynamic models.

4.1 Multiobjective Optimization

The most straightforward method for handling multiobjective optimization
is to measure both objectives on the same basis. If this is possible, the
problem can be reduced to a single objective and this would obviate the
need for any further consideration. However, this is usually not the case as
the two objectives are not always easily measured by some common basis.
For the design and control problem the two objectives are used to measure
the economic design and dynamic controllability of the process.

In order to handle the multiobjective nature in this problem, the e-
constraint method is used to generate a pareto-optimal solution. This non-
inferior solution set is the set of solutions where one objective can be im-
proved only at the expense of the other. This pareto-optimal solution can
thus be used to indicate the trade-offs between the two objectives achieved
by using alternative designs.

Through the use of the e-constraint method, the multiobjective problem
is reduced to the successive solution of single objective problems. Con-
sider the vector of objective functions J = (Ji, J2) where J; represents a
design objective and Jy a controllability objective. The application of the
€ constraint method to this two objective problem leads to the following
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formulation:

min J1 (21(152'), z
)

o o
N
N
o o
<
TR

1 )

s.t. Jz(é’l(ti,zl ) S €
F1(21(1), z1(8), z2(8), u(t), v, 9,1) = 0
f2(zl(t)’z1(t)’ZQ(t)’u(t)"U’yvt) =0

21(t0) = Z(l)
z2(ty) = 25
b (21(t:), 21(t:), z2(ti), u(ti), v,y) = 0 (10)
g'(21(t:), z1(t:), z2(t:), w(ti), v, y) < O
h'(v,y) = 0
g'(v,y) < 0
v € VCRP
y € {0,1}¢
t; € [to,tn]
1 = 0...N

The € constraint involving Jo becomes a point constraint in the problem
and is included in the constraints h’. Thus the original problem formulation
has been reduced to a single objective problem which must be solved multiple
times with varying values of € to generate the noninferior solution set.

4.2 Parameterization of Optimal Control Problem

There are a number of different approaches to the solution of this opti-
mal control problem. These include dynamic programming, solution of the
necessary conditions, complete discretization, and control parameterization.
Complete discretization techniques discretize both the state variables, z(t)
and the control variables u(t) and convert the problem to a finite dimen-
sional nonlinear program (NLP) where the optimization is carried out over
the full space of discretized variables (parameters for z(t) and u(t)) and
the design variables v. This work focuses on the control parameterization
techniques which parameterize only the control variables u(¢) in terms of
time invariant parameters. In these methods the optimization of carried out
in the space of the decision variables only (parameters u(t) and the design
variables v). At each step of the optimization procedure, the DAEs are
solved for given values of the decision variables and a feasible path for z(%)
is obtained. This solution is used to evaluate the objective function and
remaining constraints. These techniques make use of well-established inte-
gration techniques which efficiently control the discretization error through

11



the size and order of the integration steps.

The two control parameterization approaches discussed here are open
loop and closed loop parameterization. In the open loop parameterization,
the control variables are expressed as polynomial functions in the indepen-
dent variable, time ¢, whereas in the closed loop parameterization they are
expressed as functions of the state variables, z(¢).

One possible method for open loop control parameterization is the tech-
nique described in [23]. The parameterization is done through collocation
where the control variables are approximated by piecewise continuous La-
grange polynomials in ¢. This control parameterization is done in each of
the time intervals which are defined by the time instances. The number
of parameters for each control variable depends on the number of inter-
vals, indexed by %, as well as the number of collocation points (order of the
approximating polynomial), indexed by j. Through the parameterization,
the control variables u(t) become polynomial functions with time invariant
parameters w;;:

u(t) = p(wij, t)

When this control parameterization is applied to the MIOCP formulation,
the set of time invariant variables is expanded to include the parameters w;;
along with v.

Open loop control laws are generally applicable only to the situation
for which they were computed and are less robust than closed loop control
laws. Moreover, closed loop control laws are generally easier to compute
and implement. For these reasons, this work focuses on the closed loop
parameterization.

For closed loop control parameterization, the control is formulated as a
function of the state variables instead of the independent variable time. The
control law has the form

u(t) = 9 (w, z(1))

where w is the set of control parameters. The application of this control
parameterization again leads to augmenting the set of time invariant deci-
sion variables to include the control parameters, w. This provides a general
formulation for the feedback control, but the specific control law which de-
termines the function ¢ (w, z(t)) needs to be specified.

The control structure can also be included within the optimization frame-
work of the design and control problem. The control structure selection is
formulated by using binary variables to represent the alternative control
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structures. In this case, both the control parameters and the control struc-
ture are determined through the optimization.

As a particular definition of the control scheme to be included in the
design and control framework, the multi-loop Proportional Integral control
structure as outlined in [20, 21] is considered. This control structure se-
lection problem involves determining the pairings between the manipulated
and controlled variables as well as the control parameter tuning values. Bi-
nary variables are used to indicate the pairings between manipulated and
controlled variables and continuous variables are used for the control pa-
rameters.

The control parameterization and control structure selection is appended
to the problem by adding an appropriate set of constraints. The control law
(u(t) = ¥(w, z(t))) is represented by the following:

Uy (t) = Uo,r + Zses{”rs[(zmeas,s(t) - zset,s) (11)
+i f(f(zmeaS,S(t) - zset,s)]} Vre R

and the additional constraints for the control structure selection are the
following;:

K'%sg’fs < Kps < Hgsgrs Vre R,Vse S

7Lk <7< 7Y Vre R,Vse S (12)
Eses Urs <1 VreR
YrerUrs <1 Vse S

where the set of manipulated and controlled variables are denoted by R and
S respectively.

The control parameters w are the variables k,; and 7,.; which are the gain
and integral time constant for the controllers. The variables zpeqs,s(t) are
the measured variables and z, s are the respective set-points. The variables
Yrs are binary variables which have been added to the problem to indicate
the matches between manipulated variable r and controlled variable s. The
last two inequalities are logical constraints which enforce that at most one
pairing exists for each manipulated and controlled variable.

Through the application of the control parameterization and control
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structure selection, the following problem results:

min J(21(t:), z1(ti), z2(t), v, y)
s.t. F1(21(t), 21(t), z2(t),v,y,t) = O
fZ(ZI(t)’zQ(t)avayat) =0

ur(t) — uor — Y sesihrs|(Zmeas,s(t) — Zset,s)
+% fg(zmeas,s(t) - zset,s)]} = 0 VreR

Zl(to) = Z(l)

Zg(t()) = Zg
hl(zl(tz)azl(ti)7z2(tz);vay) = 0
g,(zl(tz)azl(ti);ZQ(tz);v’y) S 0

h'(v,y) = 0
g"(v,y) < 0
KEGrs < ks < Klrs Vr€R,Vs€ S
k<1 <TY Vre R,Vse S
ZseS Urs < 1 VreR
YrerUrs < 1 VseS
v € VCRP
y € {0,1}7
t; € [to,t]v]
i1 = 0...N

(13)
This problem is classified as a Mixed Integer Nonlinear Program with Dif-
ferential and Algebraic Constraints (MINLP/DAE).
This formulation can be simplified notationally by combining some of
the sets of variables. Since the sets of variables v and w are both sets of
time invariant decision variables, they can be combined into a single set

z = {v, w}
where w are the control parameters
w = {Hrsa Trs}

The vector x is now used to represent the complete set of time invariant
continuous variables.

The control parameterization results in the conversion of the control
variables to state variables. Thus, the set of dynamic variables can be aug-
mented to include the control variables:

z2 = {2a(1), u(?)}

14



The control parameterization equations, ¥ (w, z(t)), are algebraic equations
that are added to the DAE system and can be included in the set of equations
fo2- An equal number of variables and equations are added to the DAE
system thus maintaining a consistent set of equations.

The binary variables introduced for the control structure selection prob-
lem can be added to the original set of binary variables:

y=1{y,y}

Since the constraints for the control structure selection involve the control
parameters and binary variables, these constraints can be included in the
set of constraints g (z,y)

Applying these notational simplifications, the following MINLP/DAE
problem results:

min  J(21(t), z1(t:), z2(ti), @, )
s.t. fl(zl(t)azl(t)az2(t)’mayat) = 0
f2(z1(t),z2(t)’way,t) =0
z1(t)) = 29
zo(to) = 29
hl(zl(t't)azl(tl)az2(t1)amay) =0
gI(Z1(tz),Zl(tz),ZQ(ti),$,y) S 0 (14)
h'(z,y) = 0
g'(xz,y) < 0
x € X
y € {0,1}¢
ti € [to,---,tn]
i = 0...N

4.3 MINLP/DAE Solution Algorithm

The algorithmic development for the MINLP/DAE problem closely fol-
lows the developments of MINLP algorithms with appropriate extensions
for the DAE system. An overview of MINLP algorithms and extensive
theoretical, algorithmic, and applications-oriented descriptions of these al-
gorithms are found in [9]. The two classes of algorithms that are ad-
dressed here are the Generalized Benders Decomposition (GBD) [10, 8]
and the Outer Approximation (OA) [5] and its variants, Outer Approxima-
tion/Equality Relaxation (OA/ER) [13], and outer Approximation/Equality
Relaxation/Augmented Penalty (OA/ER/AP) [24]. These algorithms solve
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MINLP problems through iterations of NLP primal problems and MILP
master problems which provide upper and lower bounds on the solution of
the original problem. In the following sections, the application of GBD and
OA/ER to the solution of the MINLP/DAE is discussed. The primal and
master problems are described as extensions of the MINLP algorithms to
the solution of the MINLP/DAE formulation. The formulation of the pri-
mal problem is the same for both algorithms but the master problems are
formulated differently.

4.3.1 Primal Problem

The primal problem is obtained by fixing the y variables and its solution
provides an upper bound on the solution of the MINLP/DAE. For fixed
values of y = y*, the MIOCP becomes an optimal control problem which
has the following form:

min  J(21(t:), 21(t:), z2(ti), @, y*)
8.t fl(zl(t)azl(t)aZQ(t)awaykat) =0
f2(z1(t),22(t),m,yk,t) = 0
zi(t)) = 29
zo(to) = 29
B2 (1), 21(1), 22 (02), 2, 97) = O )
gl(zl(t’l)azl(ti)aZQ(ti)am,yk) <0
h'(z,y*) = 0
g'(z,y*) < 0
x € XCRP
t;, € [to,...,tN]
7 = 0...N

NLP/DAE Solution Algorithm: The NLP/DAE problem is solved us-
ing a parametric method where the DAE system is solved as a function of
the x variables. The solution of the DAE system is achieved through an
integration routine which returns the values of the z variables at the time
instances, z(t;), along with their sensitivities with respect to the parameters,
g—az:(ti). The resulting problem is an NLP optimization over the space of @
variables which has constraints that are implicit functions of the & variables
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through the integration. The NLP problem has the form:

min J(il(ti),zl(ti),ZQ
s.t. h’(il(ti), Zl(tz‘), zZ9

~
=
Py

(16)

oo OO

—

th"'atN]
..N

m mIA I IA

]

where the variables zi(t;), z1(¢;), and zs(t;) are determined through the
solution of the DAE system by integration:

fl(zl(t)azl(t)az (t) Z yz t) =0
Faolz1(t), z2(t), = ?}1((13 - 2(1) (17)
za(ty) = 23

This reformulated problem is an optimization over the space of x vari-
ables where the variables z(t;) are implicit functions of the x variables
through the integration of the DAE system. Since the functions J(-), g'(:),
and h'(-) include z(t;), they are also implicit functions of . The solution al-
gorithms for the NLP require the evaluation of the objective and constraints
and their gradients with respect to . These are evaluated directly for the
constraints g”(z) and h"”(x). However, for the functions J(-), g'(-), and
h/(-), the values z(t;), and the gradients g—é(ti) returned from the integra-
tion are used. The functions J(-), g’(-), and h'(-) are evaluated directly and

the gradients 4 ﬁ, ‘ch’, and dh are evaluated by using the chain rule:

dJ __ aJ o) aJ
= (%) (%)~ (%)
dh; h; oh,
@ ( ) <£) + (aml) (18)
ag; _  (99;\ (@8 2g;
w= (%) %)+ ()
With the function and gradient evaluations calculable, standard gradient
based optimization techniques can be applied to solve this problem as an

NLP. The solution of this problem provides values of the x variables and
trajectories for z(t).

QJ
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4.3.2 Outer Approximation/Equality Relaxation Master Prob-
lem

The Outer Approximation based algorithms were developed for the solution
of a class of MINLP problems whose objective function and constraints are
separable in the & and y variables and linear in the y variables. Therefore,
the class of MINLP/DAE problems that are addressed by these algorithm
have the following form:

min  J(21(t;), z1(t;), z2(t;), ) + Ty
s.t. F1(21(t), z1(2), 22(t),z, 1) = O
Fa(z1(t),22(t),z,t) = O
z1(to) = Z(f
Zz(to) = 23
h'(21(t:), z1(t:), z2(ti), ) + B'y = 0
g'(z1(ti), z1(ti), z2(ti), ) + A'y < 0 (19)
hl/(w)_l_B/Iy —_ O
g”((L’)+A”y S O
x € X
y € {01}
t; € [t tN]
3 = 0...N

Note that in this formulation, not only must the binary variables participate
in a linear and separable fashion, but they also can not participate in the
DAE system. Since the general problem includes equality constraints, the
algorithm which applied here is the Outer Approximation with Equality
Relaxation (OA/ER).

The basic idea behind the OA/ER master problem is the linearization
of the objective function and constraints. The linearization is done in the x
space and results in a MILP problem whose solution provides a lower bound
on the solution to the MINLP problem and values of the y variables for the
next primal iteration.

The OA/ER master problem for the MINLP /DAE problem is formulated
in a similar way. The problem is again linearized in the x space, but the
DAE system is not directly included. The implicit functionality of the point
constraints is utilized to include the DAE information in the master problem.
The point constraints are implicit functions of the & variables and are viewed
as general nonlinear constraints in & with possible explicit y functionality.
These constraints are linearized about the solution to the primal problem
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using the known gradient information with respect to the & variables from
the solution of the primal problem. These point constraints contain the
necessary information about the DAE system which is not explicitly part of
the master problem formulation. The resulting master problem formulation

is a MILP.

The master problem is expressed mathematically as the following;:

min
x,y

s.t.

Y

Y

Y

v

Y

Ty +p

{0, 1}

EjeBk Yj — ZjeNk y; < |Bk| -1
BF = {jlyf =1}

N* = {jlyf = 0}
k=0,1,2,...,K
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Table 2: Primal constraints and corresponding dual variables.

constraint | dual variable
Fi() vi(t)

f 2() V2(t)

gl HI

R’ N

gll NH

hll AII

where K is the set of solutions to the primal problem. The matrices T7*
and T"* are diagonal matrices used to relax the equality constraints. These
matrices are defined by

T'* = diag(t¥) % = sign(\F)

[

T = diag(t/¥) t!F = sign(\/*)

T

where M* and A’* are the Lagrange multipliers for the equality constraints.

If the y variables had participated in the DAE system, the point con-
straints would also be implicit functions of the y variables. The formulation
would not longer be valid as the DAE system would need to be included in
the master problem formulation.

4.3.3 Generalized Benders Decomposition Master Problem

The master problem for GBD is formulated using dual information and the
solution of the primal problem. Provided that the y variables participate
linearly, the problem is an MILP whose solution provides a lower bound and
y variables for the next primal problem.

In applying the GBD algorithm to the general MINLP /DAE formulation,
dual information is required from all of the constraints including the DAEs.
The dual variables for the DAEs, or adjoint variables, are analogous to the
Lagrange multipliers for the other constraints with the difference that they
are dynamic. The constraints and their corresponding dual variables are
listed in Table 2.

Dual information from the DAE system is obtained by solving the adjoint
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problem for the DAE system which has the following formulation:
(3‘£2> vi(t) — (%)Tug(t) =0
if, afy dfy df g 4

This is a set of DAEs where the solutions for 5 Az Az dzy

are known functions of time obtained from the solution of the solutlon of
the primal problem. The variables v1(t) and v»(t) are the adjoint variables
and the solution of this problem is a backward integration in time with the

following final time conditions:

T
dfl)T (dg')T AN
- t - — ] XN'=0 22
(dz'l nn) \gzr) # (22)
Thus, the Lagrange multipliers for the end-time constraints are used as the
final time conditions for the adjoint problem and are not included in the
master problem formulation.
The master problem is formulated using the solution of the primal prob-

lem, ¥ and z*(t) along with the dual information, ¥, \* and v*(t). The
relaxed master problem has the following form:

(21)

min Mb
Y,

st. opy > J(Fy)
+ [ VR F1(25 (1), 25 (1), 25(8), 2", y, 1)dt
+ [ vE (1) £2(25(1), 25(1), &, y, )t

+M"kg"("3k, y) + /\"kh”(wka Y) ke Kfeas

=}
v

L vE@) F1(25(2), 25 (2), 25(2), 2, y, t)dt
+ftN k( )f2(z1(t)azg(t)amkvyat)dt
+M//lcg//(wk’y) 4 /\”kh”(wk,y) ke K.

infeas

y €{0,1}4
(23)
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The integral term can be evaluated since the profiles for z*(t) and v*(t)
both are fixed and known. Note that this formulation has no restrictions on
whether or not y variables participate in the the DAE system.

An alternate solution method which does not use the adjoint problem
can be used if the y variables do not participate in the DAEs. The point
constraints are implicit functions of the & variables and can be viewed as
general nonlinear constraints in & with possible explicit y functionality. For
this formulation, the Lagrange multipliers for the point constraints are used
in the master problem formulation instead of the final time conditions for
the adjoint problem. Thus, it is not necessary to solve the adjoint problem
and obtain v(t) since the dual information for the DAE system is contained
in the Lagrange multipliers for the point constraints. For this situation, the
master problem has the following form:

min
yaub

sty > J(2N (), 25 (), 25 (), ¢, y)
+u'tg (Z5 (), 25 (t:), 25 (1), =%, y)
HNFRE (D (1), 2 (1), 25 (1), 2, )
+u"g" (x*, y) + N"*R" (z, y) k€ Kfoas (24)
0 > p'g'(21(t:), 2(ti), z2(t:), 2%, y)
VR (21 (1), 25 (t:), 25 (t:), =¥, y)
+u"*g" (z*, y) + \"kR" (z*, y) k € Kinfeas
y € {0,1}7

If the y variables do not participate in the DAEs, the second form of the
master problem is preferred since it does not require the solution of the
adjoint problem.

4.4 MINLP/DAE Algorithmic Statement

The algorithmic statement for the solution of the MINLP can be stated as

follows:
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Step 1 (Initialization): Set the counter k to zero. Obtain initial values
for the y variables y = y*.

Step 2 (Primal Problem): Solve the primal problem for the fixed values of
y = y*. Obtain the optimal solution, optimal ¥, optimal state profiles,z(t),

optimal Lagrange multipliers \* and u*, and gradients j—g and %. If the
primal is not feasible solve an infeasibility problem for fixed values of y = y*.
Obtain the optimal ¥ and the Lagrange multipliers A\¥ and p*. Update the
upper bound.

Step 3 (Adjoint Problem): If necessary, solve the adjoint problem. From
the solution of the adjoint problem, obtain the v(t).

Step 4 (Master Problem): Solve the master problem using the fixed
solutions of the previous primal problems. Obtain optimal values of y and
up, update the lower bound, and set y**t! =y .

Step 5 (Convergence): If the difference between the upper and lower
bound is less than some specified tolerance, terminate. Otherwise update
the counter: k£ =k + 1 and go to step 2.

A schematic of the general solution algorithm is given in Figure 4.4.

Note that problems that have y variables in the DAEs can be reformu-
lated so that these variables are replaced by @ variables. This eliminates the
complications caused by having y variables in the DAEs but creates a new
problem. The x variables used to replace the y variables are decision vari-
ables for NLP/DAE optimization, yet they have fixed values. Experience
has shown that due to the nature of the NLP /DAE solution algorithm, these
fixed values tend to cause numerical difficulties when solving the NLP/DAE
problem.

5 Implementation

The solution algorithm for the MINLP/DAE has been implemented in the
program MINOPT [22] (Mixed Integer Nonlinear OPTimizer) which has
been developed as a unified framework for the solution of various classes of
optimization problems. MINOPT is capable of solving problems including
continuous and integer variables in the presence of steady-state and dynamic
models. MINOPT features a front-end parser which allows for the concise
problem representation. MINOPT implements a broad range of solution
algorithms for handling linear programs, mixed integer linear programs,
nonlinear programs, mixed integer nonlinear programs, and problems in-

volving dynamic models. MINOPT implements OA, OA/ER, OA/ER/AP,
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Figure 1: Schematic flowsheet for the MINLP/DAE algorithm
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and GBD algorithms for the solution of the MINLPs. For the solution of
the LP, MILP, NLP, and DAE subproblems, MINOPT connects to existing
software packages.

For the solution of the NLP/DAE problems, any appropriate gradient
based solver can be used. However, the function evaluations are expensive
since they involve the solution of the DAE system. For this reason, se-
quential quadratic programming methods are preferable to augmented La-
grangian methods since they generally require fewer function evaluations.
MINOPT incorporates both NPSOL [11] (SQP) and MINOS [18] (aug-
mented Lagrangian) for the solution of the NLPs, but NPSOL is generally
used for the NLP/DAE problems.

For the solution of the DAE system and sensitivity analysis, MINOPT
uses DASOLV [12] which is an implementation of a backwards difference
formula algorithm for large sparse DAEs and features efficient sensitivity
evaluation and discontinuity handling. For the solution of the LP and MILP
problems, CPLEX [3] is used.

6 Examples

6.1 Example 1—Reactor Network

The first example is a reactor network synthesis problem which considers
a single, first-order, exothermic, irreversible reaction (A — B). The su-
perstructure has two Continuous Stirred Tank Reactors (CSTRs) arranged
as shown in Figure 2. The reactor is cooled by a perfectly mixed cooling
jacket which surrounds the vertical walls of the reactor. Constant density
and constant volume reactors are assumed for this problem.

The temperature in each reactor is selected as the controlled variable,
and the jacket flow rate is used as the manipulated variable. Although the
desired output for the problem is the single product stream, both reactor
outputs are considered for the controllability analysis, since both need to
be controlled. As part of the design and control analysis, the set-points for
the reactor temperatures are variables for the problem. The controllability
measure used in this problem is the integral square error of the reactor
temperatures and their respective set-points. The set-points or nominal
values for the reactor temperature affects both the economic design and the
controllability of the process.

The variables in the problem are the flow rates, compositions, temper-
atures, dimensions of the reactors, and number of reactors. The variables
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Figure 2: Reactor Network Superstructure for Example 1

used in the problem are outlined in Table 3 and the parameters and values
are listed in Table 4.

The two objectives for this problem are the total cost for the economic
design and the Integral Square Error (ISE) for the dynamic controllability.
The capital cost is determined from the diameter and height of the reactors
using the cost correlation in [4]:

costeap = 1916.9D°%% (H,.1)%8%% 4 1916.9D;5°% (H,,5) 802
The utility cost is determined from the flow rate of the cooling water.
costyil = 32.77(Fjp1 + Fjn2)

The total cost of the process is determined by assuming a operating period
of four years
Costior = COSteap + 4yr X costygil

The integral square error of the reactor temperatures and their set-points
is represented by the following differential equation:

dp

dt - (TTOI - T:01)2 + (TTOQ - T:OQ)Q
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Table 3: Variables used for the reactor network problem

z variable description
Chrio inlet concentration to reactor 2
Trio inlet temperature to reactor 2
Cro1, Cro2 outlet concentrations in reactors 1,2
Tro1,Tro2 outlet temperatures in reactors 1,2
Fj., F; jacket coolant flow rate
Tji1, Tio jacket coolant inlet temperature
Tjo1, Tjo2 jacket coolant outlet temperature
Cp product composition
T, product temperature
k1, ko reaction rates
Iiyo1, Itro2 Integral term for the PI controllers
I Integral square error controllability objective
x variable description

Y o set-points for outlet temperatures
Vi1, Vo volume of reactors 1, 2
Aq, Ay heat exchange area for reactors 1, 2
Dy, Do diameter of reactors 1, 2
H.i,H» height of reactors 1, 2
Vi, Vj volume of jackets 1, 2
Fq, Fpo reactor flow rates
F; feed split to reactor 2
F flow rate from reactor 1 to reactor 2
F,, flow rate from reactor 2 to product
F, product flow rate
Fjn1 nominal jacket 1 flow rate
Fino nominal jacket 2 flow rate
Kj1, Kj2 controller gain
Tj1, Tj2 integral time constant
y variable (binary) | description
Yrl, Yro existence of reactor 1 and 2

which has the initial condition p(tp) = 0. Thus, the controllability objective
is the minimization of y at the final time.
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Table 4: Parameters for the reactor network problem

Description Parameter | Value

Heat of reaction AH —3000Btu/lbmol
Heat transfer coefficient U 300Btu/(hr ft>°R)
Energy of activation E/R 15075°R

Kinetic rate constant ko 4.08 x 10'0hr~!
Liquid density p 501b/ f13

Liquid heat capacity Cy 0.75Btu/(Ib°R)
Coolant density pj 62.3Btu/(ft3°R)
Coolant heat capacity C; 1.0Btu/(Ib°R)
Feed flow rate Fy 100£#3/hr

Feed composition Cy 1bmol A/ f13
Feed temperature Ty 600°R

Coolant inlet temperature | T); 530°R

Coolant inlet temperature | T);o 530°R

Coolant cost Costeoor 3.74 x 10758/ f43

The mathematical model for the superstructure is the following:

Fy
F, r2
CrioFra
Tri2F r2

Frl + Fs

F,+ F

Cst + C’rolFb

Tst + TrolFb

CrilF'rl - C’rolFrol - lerlcrol
TrilFrl - TrolFrol - pATZkIV;"ICrol - %
CriZfrZ - Cro2f'ro2 - k'Z‘/r?Cro?

Tri2f7‘2 - Tro2f7‘02 - pATZIWVYrZCroZ - %A2(Tr02 - T,on)
Fm =+ Fb

Fm + Fr?

CrolFm + CroZFTZ

TrolFm + TroQFTQ

TjinFj1 — Tjo1 Fjo1 + %Al (Tror — Tjo1)
TjiaFjo — TjoaFjo2 + %fb (Tro2 — Tjo2)
koeR;—rEol

_—E
koe RTy02

A2 (Trol - Tjol)

28



The volume of the reactor and the heat transfer area are determined by
the dimensions of the reactor.

erl = %Dngrl
‘/;‘2 = %D32Hr2
Ay =7Dp Hpy
Ay = Do Hpq

(26)

Assuming the jacket has a four inch clearance, the volume of the jacket is
determined by the following:

Vit = A1 ft
27
The PI control equations are the following:
—Z?ﬁ(’l = Tro1 — T;"kol =
—3;4@ = Troo — Tﬁos =0 ki1 (28)
Fj = an1 + Kjl(Trol - T:ol) + TJ]_.IIt'rol =0
Fjo = Fjpo+ kj2(Troa — Tiyo) + %Imﬁ =0

The problem has a fixed time horizon of o = 0 and ¢; = 5hr and a final
time point constraint on the product composition:

Cp(ty) < 0.025

The initial condition for the DAE system is the steady-state solution
for the given values of the z variables. The dynamics are caused by a 10%
increase step disturbance in the feed temperature modeled by

Tf = 600°R + 60°R/(1 + exp[—50hr(t — 0.5hr)])

The € constraint method is applied by minimizing the total cost objective
and incorporating the controllability objective as an end time constraint:

plty) <e

The value of € is varied from $291,050 (the economic optimum) to $401,712
(the controllability optimum) to generate the noninferior solution set shown
in Figure 3.

The noninferior solution set has two regions which correspond to the
single reactor and two reactor designs. The lower cost and higher ISE region
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Figure 3: Noninferior solution set for the reactor network example.

corresponds to the two reactor design and the higher cost lower ISE region
corresponds to the single reactor. The single reactor is more controllable
because it incorporates a larger reactor and thus has more surface area
available for heat transfer. The solutions for three of the designs are given
in Table 5. The jump in the noninferior solution set is from the two reactor
design to the single reactor design and design D corresponds to the minimum
cost single reactor design.

Designs A and B correspond to designs with two reactors and design C
has only a single reactor. All of the reactors in designs A and B operate at
a temperature of 620° R while the reactor in design C operates at 619.3° R.
The dynamic responses of the reactor temperatures for reactors 1 and 2 in
designs A and B are shown in Figures 4 and 5 respectively. The dynamic
response of the reactor temperature for the reactor in design C is shown in
Figure 6.

The dynamic responses of all the reactors are shown in Figure 7 in order
to compare the responses. Since the controllability of the process was based
on the all of the reactor temperatures in the process, design C has the best
controllability measure. However, if the processes are compared based on
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Table 5: Solution results for three reactor designs

Solution A B C
Total Cost ($) 291400 309610 401720
Capital Cost (§) 186340 216820 320970
Utility Cost (§) 105060 92790 80750
ISE 0.04524 0.015 0.0028
Dy (m) 14.28 1848  24.80
Dya(m) 9471  7.256 —
Hy1(m) 5791 6161  8.307
H,.o(m) 3.157 2.419 —
Vi (m) 927.0 1653 4012
Via(m) 2224 100.0 —
5 620 620 619.3

" 620 620 —
Fint 765.5  693.2  616.1
Fin2 36.13  14.76 —
Kj1 413.7  536.07 898.5
Kj 34.45  10.29 -
Tj1 1.751 1.775 1.769
Tj2 0.1681  0.0100 —

the responses of the product temperatures (outlet temperatures of reactor 2
in designs A and B), designs A and B exhibit better responses than design
C and design A has the best response. Although the overall process may
not be more controllable, the two reactors have a greater effect on damping
the effect of the disturbance on the product.
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6.2 Example 2—Binary Distillation

This example illustrates the proposed approach for the design of a binary
distillation column. The goal is to design a process which separates a sat-
urated liquid feed into bottoms and distillate products of specified purity.
The number of trays, location of the feed, diameter of the column, flow rates
and compositions must be determined. The superstructure considered for
this problem is shown in Figure 8. The superstructure includes a PI control
scheme for the control of the distillate and bottoms composition. The vapor
boilup is used to control the bottoms composition and the reflux rate is used
to control the distillate composition.

For the development of the mathematical model, the assumptions of
equimolar overflow, constant relative volatility («), partial reboiler, and
total condenser are made. The structural alternatives are represented by
the binary variables p; and ¢; which represent the existence of the feed
and reflux respectively to tray ¢. The location of the reflux determines the
number of trays for the column since there is no liquid flow in the trays
above the reflux location.

The continuous time invariant variables in the model are the tray liquid
holdup, M, tray hydraulic time constant, 3, steady-state reflux ratio, Ry,
steady-state vapor boilup, Vj,, column diameter, D,, and the controller gains
and time constants Ky, Kgr, 7v, and 7g.

The dynamic variables in the model are the liquid compositions, z;, vapor
compositions, y;, liquid flow rate from each tray, L;, bottoms and distillate
flow rates, B and D, vapor boilup, V, and the reflux flow rate R. First order
lags between the calculated control and the control level are included. For
the composition measurements, a fifth order system is used to approximate
a 5 minute deadtime between the actual value and the measured value. The
parameters for the problem are listed in Table 6

Table 6: Parameters for the binary distillation problem

Parameter symbol | value
Relative volatility a 2.5
Height over the weir | hy, 0.0254m
Payback period Bpay 4yr

Tax factor Brax 0.4
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Figure 8: Superstructure for Binary Distillation Example

The full model for the binary distillation column is outlined below. The
parameters for this problem are the same as those used in [14].

e Reboiler Component Balance

dzx
MRd—tB = Li(z1 —zB) + V(2B — yB)

e Tray component balances

dx;

M=
dt

=Lip1 (i1 — @) + V(yio1 —vi) +pif (2 — z5) + qir(zp — ;)
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Condenser Component balance

dr D
cgp = V(yn —zp)
Reboiler Total Balance

dB
—=L;-V-B
B 7 1
Tray total balances

dL;'

B =Linn—Li+piF + R

Condenser Total balance
dD
~ _V—-—R-D
J6} 7 V—-R

Reboiler Equilibrium

_ arp
B = 1+zp(a—1)
Tray equilibrium
o az;
Y T w1

Measurement lags for the distillate and bottoms compositions (fifth
order system and a five minute delay)

d° d d® @ d
oz d*z P d’z dz
a5 T g P g PO g T epm =
PI controllers
dIB o *
E =TBm —Tp
dID _ *
W =ZDpm —Tp
Ky
Ve =Vis + Kv(zpm — 25) — —Ip
TV
K
RC - Rss + KR(-TD,m - ‘/'E*D) - T—IfID
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e Final control lags

av

O'QE =V.-V
dR

0.5E =R.— R

For the tray hydraulics, the Francis weir formula is used to obtain molar
hold-ups, M, and tray time constants, 3 as functions of the column diameter.
Both are assumed to time invariant and the same for all trays. The reboiler
and condenser hold-ups are ten time the tray holdups and the reboiler and
condenser time constants are 100 time the tray time constant.

M = 7.538115(((0.0014134/D,)?/3) + hy,) D?

B = 0.05271D.-3333

The diameter of the column must be large enough to avoid flooding
within the column. The flooding within the column is determined by the
vapor flow rate in the column and the appropriate constraint to ensure that
the column diameter is large enough is the following:

D, > 0.6719v/ Vs

The number of trays in the column is determined by the position of the
reflux using the following constraint:

Ny = (i) (a)

i

The following logical constraints are included to ensure the existence of
one feed, the existence of one reflux, that the feed enters on tray 4 or above,
that the reflux enters on tray ten or above, and that the reflux enters at
least four trays above the feed.

N
dopi=1
=1

N
> =1
=1

N



> (@) (@) — (6)(ps) =4

=1

The economic objective for the process is the annualized cost:

cost = BraxCostytil + €oSteap/Bpay

cost = T756Vss + 3.075(615 + 324D?
+486(6 + 0.76 N;) D) + 61.25N; (0.7 + 1.5D?)

The controllability objective is the sum of the time weighted ISE of the
distillate and bottoms compositions:

C(li—l; =t(zp —25)* + t(zp — 15)*
The ISE for the two compositions could be included as separate controlla-
bility measures, but since both have the same magnitude, they are treated
as having the same weight factor. Thus, they are included into a single con-
trollability objective. In cases where the controllability objectives exhibit
different characteristics or variations, different weight factors can be used to
account for these different characteristics.

The initial condition for this problem is the steady-state solution along
with the values of the controls set to their nominal values. The dynamics
for the problem are caused by a step disturbance in the feed composition:

0.9

2 =045+ 7 T ¢ 10(-10)

The e-constraint method is applied to the multiobjective problem by
imposing the following end-point constraint:

plty) <e

The MINLP/DAE problem is solved using GBD with the adjoint prob-
lem since the problem has y variables in the DAE system. The value of €
is varied from 0.01 to 0.5 to generate the noninferior solution set which is
shown in Figure 9. Three points along the noninferior solution set are in-
dicated: The minimum cost process, A, the minimum ISE process, C, and
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Figure 9: Noninferior solution set for the distillation column example

an intermediate process, B. The specific results for these three columns are
shown in Table 7.

The noninferior solution set provides a way of quantitatively assessing
the tradeoffs between the design and control of the process. The amount of
cost incurred for obtaining a more controllable process can be obtained.

Since the dynamics are included in the solution of the problem, the dy-
namic responses are obtained as part of the solution. The dynamic responses
of the bottoms and distillate compositions for the three columns are shown
in Figures 10 and 11.

The controllability of the distillation process is observed to increase when
the number of trays in the column is increased. The controllability is also
increased by increasing the vapor boilup and diameter of the column. The
larger column both in diameter and in height has a greater damping effect
on the disturbance than the smaller columns. In comparing the dynamic
responses of the three solutions, the improvement in the dynamic operation
of the process can be seen.
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Table 7: Solution results for three columns

Solution A B C
Total Cost (3) 34182 37293 57131
Capital Cost ($) 24428 25602 45833
Utility Cost ($) 9754 11691 11298
ISE 0.635  0.100 0.03
Trays 16 15 25
Feed Tray 8 5 5
De(m) 0.7535 0.8250  1.050
R(kmol /min) 0.8097  1.059 1.009
V(kmol /min) 1.258  1.507  1.457
Ky 2.636  8.137  8.907
Ty (min) 20.55 18.23  10.39
Kr -0.1078 -1.048 -5.677
T (min) 0.4827  4.696  20.65
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Figure 10: Dynamic responses of bottoms compositions for three solutions
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Figure 11: Dynamic responses of distillate compositions for three solutions

6.3 Example 3—Reactor-Separator-Recycle System

As a third example, the design of a process involving a reaction step, a
separation step, and a recycle loop is considered. The parameters for the
problem and the design follows the work in [15]. Fresh feed containing A and
B flow into a an isothermal reactor where the first order irreversible reaction
A — B takes place. The product is from the reactor is sent to a distillation
column where the unreacted A is separated from the product B and sent
back to the reactor. The superstructure shown in Figure 12 has the same
distillation column as in the previous example with the addition of a reaction
step. The solution requires the determination of the same parameters for
the distillation column as in the previous example along with the size of the
reactor.

The additional dynamic variables for the problem are the reactor outlet
flow rate, F., and the reactor composition, z.. The volume of the reactor,
V; is the additional time invariant variable. The reactor is mathematically
modeled using the following equations:

e Total balance
F.=F.+D
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Figure 12: Superstructure for Reactor-Separator-Recycle system

e Component Balance

d
% — F.z, + Dap — Fozo — Vokz,

Vi
The same model equations are used for the distillation column.

For this problem, the single output is the product composition. However,
the same two possible control loops are considered for the operation of the
distillation column. The bottoms (product) composition is controlled by the
vapor boil-up and the distillate composition is controlled by the reflux rate.
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Figure 13: Noninferior solution set for the Reactor—Separator—Recycle Sys-
tem

Since only the product composition is specified, the distillate composition
set-point is free and left to be determined through the optimization.

The cost function includes column and reactor capital and utility costs.
The derivation and data for the cost function can be found in [15].

COStreactor = 17639D1-9%6(2D,.)0-802

cOsteolumn = 6802D, "% (2.4N,)**% + 548.8D > N,
COStexchamgers = 193023‘/;2'65

costyilities = 72420V,

_ 1
Costiptal = Bpay [COStreactor + costeolumn + COStexchangerS]

+;8t ax [COSt utilities]

The controllability is the time weighted ISE for the product composition:

du _

L~ t(ap — k)’
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Table 8: Solution results for three designs

Solution A B C
Cost (9) 489,000 534,000 736,000
Capital Cost ($) 321,000 364,000 726,000
Utility Cost () 168,000 170,000 10,000
ISE 0.0160 0.00379  0.0011
Trays 19 8 1
Feed 19 8 1
V. (kmol) 2057.9  3601.2 15000
V(kmol/hr) 138.94  141.25  85.473
Ky 90.94 80.68 87.40
Tv(hr) 0.295 0.0898  0.0156
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Figure 14: Dynamic responses of product compositions for three designs

All of the designs in the noninferior solution set are strippers. Since
the feed enters at the top of the column, there is no reflux and thus no
control loop for the distillate composition. The controllability of the process
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is increased by increasing the size of the reactor and decreasing the size of
the column. The most controllable design has a large reactor and a single
flash unit.

7 Conclusions

This work presented a method for systematically analyzing the interaction
between the design economics and dynamic controllability. The mathemat-
ical programming framework of process synthesis has been applied to the
problem by postulating a process superstructure and modeling with DAEs.
The resulting problem formulation is a multiobjective MIOCP which is
solved to establish the trade-offs between two objectives representing the
economic and controllability aspects of the process. The multiobjective
problem was solved using an e-constraint method to reduce the problem to
the solution of multiple MIOCP problems. A parameterization method has
been applied to the optimal control problem reducing it to an MINLP/DAE
problem. Several solution strategies for solving the MINLP/DAE problem
have been presented. These strategies differ based on the structure of the
MINLP /DAE problems and assumptions that can be made. The outlined so-
lution procedure was effectively applied to three example problems including
rector network synthesis, binary distillation, and a reactor-separator-recycle
system.

One of the key issues in assessing the tradeoffs between the design a
control of a process is the measurement of the controllability of the pro-
cess. This work focused on using ISE as a controllability measure despite a
number of drawbacks associated with it. Future work should address the de-
velopment and usage of more suitable controllability measures for nonlinear
processes.

The proposed approach has been applied by considering a single distur-
bance. Although the feedback control can be robust, the resulting solution
is likely to be specific to the proposed disturbance. The approach also does
not consider uncertainty in the process that may arise due to variation in
external variables or internal parameters. Further work should address both
of these issues involving the ideas of robust control and flexibility analysis.
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